forked from zheng-da/incubator-mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsymbol_resnet-v2.R
162 lines (147 loc) · 7.38 KB
/
symbol_resnet-v2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
###
# Reproducing parper:
# Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. "Identity Mappings in Deep Residual Networks"
###
library(mxnet)
residual_unit <- function(data, num_filter, stride, dim_match, name, bottle_neck=TRUE, bn_mom=0.9, workspace=512){
if(bottle_neck){
bn1 <- mx.symbol.BatchNorm(data=data, fix_gamma=FALSE, eps=2e-5,
momentum=bn_mom, name=paste0(name,'_bn1'))
act1 <- mx.symbol.Activation(data=bn1, act_type='relu',
name=paste0(name, '_relu1'))
conv1 <- mx.symbol.Convolution(data=act1, num_filter=as.integer(num_filter*0.25),
kernel=c(1,1), stride=c(1,1), pad=c(0,0),
no_bias=TRUE, workspace=workspace,
name=paste0(name,'_conv1'))
bn2 <- mx.symbol.BatchNorm(data=conv1, fix_gamma=FALSE, eps=2e-5,
momentum=bn_mom, name=paste0(name, '_bn2'))
act2 <- mx.symbol.Activation(data=bn2, act_type='relu', name=paste0(name, '_relu2'))
conv2 <- mx.symbol.Convolution(data=act2, num_filter=as.integer(num_filter*0.25),
kernel=c(3,3), stride=stride, pad=c(1,1),
no_bias=TRUE, workspace=workspace,
name=paste0(name, '_conv2'))
bn3 <- mx.symbol.BatchNorm(data=conv2, fix_gamma=FALSE, eps=2e-5,
momentum=bn_mom, name=paste0(name, '_bn3'))
act3 <- mx.symbol.Activation(data=bn3, act_type='relu', name=paste0(name,'_relu3'))
conv3 <- mx.symbol.Convolution(data=act3, num_filter=num_filter, kernel=c(1,1),
stride=c(1,1), pad=c(0,0), no_bias=TRUE,
workspace=workspace, name=paste0(name, '_conv3'))
if (dim_match){
shortcut <- data
} else{
shortcut <- mx.symbol.Convolution(data=act1, num_filter=num_filter,
kernel=c(1,1), stride=stride, no_bias=TRUE,
workspace=workspace, name=paste0(name,'_sc'))
}
return (conv3 + shortcut)
} else{
bn1 <- mx.symbol.BatchNorm(data=data, fix_gamma=FALSE, momentum=bn_mom,
eps=2e-5, name=paste0(name,'_bn1'))
act1 <- mx.symbol.Activation(data=bn1, act_type='relu', name=paste0(name, '_relu1'))
conv1 <- mx.symbol.Convolution(data=act1, num_filter=num_filter, kernel=c(3,3),
stride=stride, pad=c(1,1), no_bias=TRUE,
workspace=workspace, name=paste0(name,'_conv1'))
bn2 <- mx.symbol.BatchNorm(data=conv1, fix_gamma=FALSE, momentum=bn_mom,
eps=2e-5, name=paste0(name, '_bn2'))
act2 <- mx.symbol.Activation(data=bn2, act_type='relu',
name=paste0(name, '_relu2'))
conv2 <- mx.symbol.Convolution(data=act2, num_filter=num_filter, kernel=c(3,3),
stride=c(1,1), pad=c(1,1), no_bias=TRUE,
workspace=workspace, name=paste0(name, '_conv2'))
if (dim_match){
shortcut = data
} else {
shortcut <- mx.symbol.Convolution(data=act1, num_filter=num_filter, kernel=c(1,1),
stride=stride, no_bias=TRUE,
workspace=workspace, name=paste0(name,'_sc'))
}
return (conv2 + shortcut)
}
}
resnet <- function(units, num_stage, filter_list, num_class, bottle_neck=TRUE,
bn_mom=0.9, workspace=512){
num_unit <- length(units)
if(num_unit != num_stage) stop("Number of units different from num_stage")
data <- mx.symbol.Variable(name='data')
data <- mx.symbol.BatchNorm(data=data, fix_gamma=TRUE, eps=2e-5, momentum=bn_mom,
name='bn_data')
body <- mx.symbol.Convolution(data=data, num_filter=filter_list[1], kernel=c(7, 7),
stride=c(2,2), pad=c(3, 3),
no_bias=TRUE, name="conv0", workspace=workspace)
body <- mx.symbol.BatchNorm(data=body, fix_gamma=FALSE, eps=2e-5,
momentum=bn_mom, name='bn0')
body <- mx.symbol.Activation(data=body, act_type='relu', name='relu0')
body <- mx.symbol.Pooling(data=body, kernel=c(3, 3), stride=c(2,2),
pad=c(1,1), pool_type='max')
for(i in 1:num_stage){
if(i==1) stride <- c(1,1)
else stride <- c(2,2)
body <- residual_unit(body, filter_list[i+1], stride, FALSE,
name=paste0('stage', i, '_unit1') ,
bottle_neck=bottle_neck, workspace=workspace)
for(j in 1:(units[i]-1)){
body <- residual_unit(body, filter_list[i+1], c(1,1),
TRUE, name=paste0('stage',i, '_unit', j + 1),
bottle_neck=bottle_neck,
workspace=workspace)
}
}
bn1 <- mx.symbol.BatchNorm(data=body, fix_gamma=FALSE, eps=2e-5,
momentum=bn_mom, name='bn1')
relu1 <- mx.symbol.Activation(data=bn1, act_type='relu', name='relu1')
# Although kernel is not used here when global_pool=TRUE, we should put one
pool1 <- mx.symbol.Pooling(data=relu1, global_pool=TRUE, kernel=c(7, 7),
pool_type='avg', name='pool1')
flat <- mx.symbol.Flatten(data=pool1)
fc1 <- mx.symbol.FullyConnected(data=flat, num_hidden=num_class, name='fc1')
resnet <- mx.symbol.SoftmaxOutput(data=fc1, name='softmax')
return(resnet)
}
get_symbol <- function(num_class, depth=18){
if (depth == 18){
units <- c(2, 2, 2, 2)
} else if (depth == 34){
units = c(3, 4, 6, 3)
} else if (depth == 50){
units = c(3, 4, 6, 3)
} else if (depth == 101){
units = c(3, 4, 23, 3)
} else if (depth == 152){
units = c(3, 8, 36, 3)
} else if (depth == 200){
units = c(3, 24, 36, 3)
} else if (depth == 269){
units = c(3, 30, 48, 8)
} else{
stop(paste0("no experiments done on depth ", depth))
}
if (depth >=50){
filter_list <- c(64, 256, 512, 1024, 2048)
bottle_neck <- TRUE
} else{
filter_list <- c(64, 64, 128, 256, 512)
bottle_neck <- FALSE
}
bn_mom <- 0.9 #momentum of batch normalization
workspace <- 500
symbol <- resnet(units=units, num_stage=4, filter_list=filter_list,
num_class=num_class, bottle_neck=bottle_neck,
bn_mom=bn_mom, workspace=workspace)
return(symbol)
}