-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample.py
144 lines (124 loc) · 5.99 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import sys
import torch
from utils.train_utils import set_random_seed
from utils import init_env
import os
import argparse
from pathlib import Path
from utils.collate_utils import collate
from utils.import_utils import instantiate_from_config, recurse_instantiate_from_config, get_obj_from_str
from utils.init_utils import add_args
from torch.utils.data import DataLoader
from utils.trainer import Trainer
set_random_seed(7)
def get_loader(cfg):
cod10k_test_dataset = instantiate_from_config(cfg.test_dataset.COD10K)
camo_test_dataset = instantiate_from_config(cfg.test_dataset.CAMO)
chameleon_test_dataset = instantiate_from_config(cfg.test_dataset.CHAMELEON)
nc4k_test_dataset = instantiate_from_config(cfg.test_dataset.NC4K)
cod10k_test_loader = DataLoader(
cod10k_test_dataset,
batch_size=cfg.batch_size,
collate_fn=collate
)
camo_test_loader = DataLoader(
camo_test_dataset,
batch_size=cfg.batch_size,
collate_fn=collate
)
chameleon_test_loader = DataLoader(
chameleon_test_dataset,
batch_size=cfg.batch_size,
collate_fn=collate
)
nc4k_test_loader = DataLoader(
nc4k_test_dataset,
batch_size=cfg.batch_size,
collate_fn=collate
)
return cod10k_test_loader, camo_test_loader, chameleon_test_loader, nc4k_test_loader
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', type=str, default=None)
parser.add_argument('--fp16', action='store_true')
parser.add_argument('--results_folder', type=str, default='./results')
parser.add_argument('--num_epoch', type=int, default=150)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--gradient_accumulate_every', type=int, default=1)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--num_sample_steps', type=int, default=None)
parser.add_argument('--target_dataset', nargs='+', type=str, default=['CAMO', 'COD10K', 'CHAMELEON', 'NC4K'])
parser.add_argument('--time_ensemble', action='store_true')
parser.add_argument('--batch_ensemble', action='store_true')
cfg = add_args(parser)
assert not (cfg.time_ensemble and cfg.batch_ensemble), 'Cannot use both time_ensemble and batch_ensemble'
"""
Hack config here.
"""
if cfg.num_sample_steps is not None:
cfg.diffusion_model.params.num_sample_steps = cfg.num_sample_steps
cod10k_test_loader, camo_test_loader, chameleon_test_loader, nc4k_test_loader = get_loader(cfg)
cond_uvit = instantiate_from_config(cfg.cond_uvit,
conditioning_klass=get_obj_from_str(cfg.cond_uvit.params.conditioning_klass))
model = recurse_instantiate_from_config(cfg.model,
unet=cond_uvit)
diffusion_model = instantiate_from_config(cfg.diffusion_model,
model=model)
optimizer = instantiate_from_config(cfg.optimizer, params=model.parameters())
trainer = Trainer(
diffusion_model,
train_loader=None, test_loader=None,
train_val_forward_fn=get_obj_from_str(cfg.train_val_forward_fn),
gradient_accumulate_every=cfg.gradient_accumulate_every,
results_folder=cfg.results_folder,
optimizer=optimizer,
train_num_epoch=cfg.num_epoch,
amp=cfg.fp16,
log_with=None,
cfg=cfg,
)
trainer.load(pretrained_path=cfg.checkpoint)
cod10k_test_loader, camo_test_loader, chameleon_test_loader, nc4k_test_loader = \
trainer.accelerator.prepare(cod10k_test_loader, camo_test_loader, chameleon_test_loader, nc4k_test_loader)
dataset_map = {
'CAMO': camo_test_loader,
'COD10K': cod10k_test_loader,
'CHAMELEON': chameleon_test_loader,
'NC4K': nc4k_test_loader,
}
assert all([d_name in dataset_map.keys() for d_name in cfg.target_dataset]), \
f'Invalid dataset name. Available dataset: {dataset_map.keys()}' \
f'Your input: {cfg.target_dataset}'
target_dataset = [(dataset_map[dataset_name], dataset_name) for dataset_name in cfg.target_dataset]
for dataset, dataset_name in target_dataset:
trainer.model.eval()
mask_path = Path(cfg.test_dataset.CAMO.params.image_root).parent.parent
save_to = Path(cfg.results_folder) / dataset_name
os.makedirs(save_to, exist_ok=True)
if cfg.batch_ensemble:
mae, _ = trainer.val_batch_ensemble(model=trainer.model,
test_data_loader=dataset,
accelerator=trainer.accelerator,
thresholding=False,
save_to=save_to)
elif cfg.time_ensemble:
mae, _ = trainer.val_time_ensemble(model=trainer.model,
test_data_loader=dataset,
accelerator=trainer.accelerator,
thresholding=False,
save_to=save_to)
else:
mae, _ = trainer.val(model=trainer.model,
test_data_loader=dataset,
accelerator=trainer.accelerator,
thresholding=False,
save_to=save_to)
trainer.accelerator.wait_for_everyone()
trainer.accelerator.print(f'{dataset_name} mae: {mae}')
if trainer.accelerator.is_main_process:
from utils.eval import eval
eval_score = eval(
mask_path=mask_path,
pred_path=cfg.results_folder,
dataset_name=dataset_name)
trainer.accelerator.wait_for_everyone()