This repository was archived by the owner on Mar 7, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathVMatrix.h
executable file
·1100 lines (866 loc) · 33.7 KB
/
VMatrix.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//
// Created by toxicoverflow on 20.02.17.
//
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
//
// VMatrix always postmultiply vectors as in Ax = b.
// Given a set of basis vectors ((F)orward, (L)eft, (U)p), and a (T)ranslation,
// a matrix to transform a vector into that space looks like this:
// Fx Lx Ux Tx
// Fy Ly Uy Ty
// Fz Lz Uz Tz
// 0 0 0 1
// Note that concatenating matrices needs to multiply them in reverse order.
// ie: if I want to apply matrix A, B, then C, the equation needs to look like this:
// C * B * A * v
// ie:
// v = A * v;
// v = B * v;
// v = C * v;
//=============================================================================
#ifndef VMATRIX_H
#define VMATRIX_H
#ifdef _WIN32
#pragma once
#endif
#include <string.h>
#include "Vector.h"
typedef float vec_t;
typedef int SideType;
// Used to represent sides of things like planes.
#define SIDE_FRONT 0
#define SIDE_BACK 1
#define SIDE_ON 2
#define VP_EPSILON 0.01f
class TableVector
{
public:
vec_t x, y, z;
operator Vector &() { return *((Vector *)(this)); }
operator const Vector &() const { return *((const Vector *)(this)); }
// array access...
inline vec_t& operator[](int i)
{
Assert( (i >= 0) && (i < 3) );
return ((vec_t*)this)[i];
}
inline vec_t operator[](int i) const
{
Assert( (i >= 0) && (i < 3) );
return ((vec_t*)this)[i];
}
};
class VPlane
{
public:
VPlane( );
VPlane( const Vector& vNormal, vec_t dist );
void Init( const Vector& vNormal, vec_t dist );
// Return the distance from the point to the plane.
vec_t DistTo( const Vector& vVec ) const;
// Copy.
VPlane& operator=( const VPlane& thePlane );
// Returns SIDE_ON, SIDE_FRONT, or SIDE_BACK.
// The epsilon for SIDE_ON can be passed in.
SideType GetPointSide( const Vector& vPoint, vec_t sideEpsilon = VP_EPSILON ) const;
// Returns SIDE_FRONT or SIDE_BACK.
SideType GetPointSideExact( const Vector& vPoint ) const;
// Classify the box with respect to the plane.
// Returns SIDE_ON, SIDE_FRONT, or SIDE_BACK
SideType BoxOnPlaneSide( const Vector& vMin, const Vector& vMax ) const;
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Flip the plane.
VPlane Flip( );
// Get a point on the plane (normal*dist).
Vector GetPointOnPlane( ) const;
// Snap the specified point to the plane (along the plane's normal).
Vector SnapPointToPlane( const Vector& vPoint ) const;
#endif
public:
Vector m_Normal;
vec_t m_Dist;
#ifdef VECTOR_NO_SLOW_OPERATIONS
private:
// No copy constructors allowed if we're in optimal mode
VPlane(const VPlane& vOther);
#endif
};
class VectorByValue : public Vector
{
public:
// Construction/destruction:
VectorByValue(void) : Vector() {}
VectorByValue(vec_t X, vec_t Y, vec_t Z) : Vector( X, Y, Z ) {}
VectorByValue(const VectorByValue& vOther) { *this = vOther; }
};
//-----------------------------------------------------------------------------
// Inlines.
//-----------------------------------------------------------------------------
inline VPlane::VPlane( )
{
}
inline VPlane::VPlane( const Vector& vNormal, vec_t dist )
{
m_Normal = vNormal;
m_Dist = dist;
}
inline void VPlane::Init( const Vector& vNormal, vec_t dist )
{
m_Normal = vNormal;
m_Dist = dist;
}
inline vec_t VPlane::DistTo( const Vector& vVec ) const
{
return vVec.Dot( m_Normal ) - m_Dist;
}
inline VPlane& VPlane::operator=( const VPlane& thePlane )
{
m_Normal = thePlane.m_Normal;
m_Dist = thePlane.m_Dist;
return *this;
}
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline VPlane VPlane::Flip( )
{
return VPlane( -m_Normal, -m_Dist );
}
inline Vector VPlane::GetPointOnPlane( ) const
{
return m_Normal * m_Dist;
}
inline Vector VPlane::SnapPointToPlane( const Vector& vPoint ) const
{
return vPoint - m_Normal * DistTo( vPoint );
}
#endif
inline SideType VPlane::GetPointSide( const Vector& vPoint, vec_t sideEpsilon ) const
{
vec_t fDist;
fDist = DistTo( vPoint );
if ( fDist >= sideEpsilon )
return SIDE_FRONT;
else if ( fDist <= -sideEpsilon )
return SIDE_BACK;
else
return SIDE_ON;
}
inline SideType VPlane::GetPointSideExact( const Vector& vPoint ) const
{
return DistTo( vPoint ) > 0.0f ? SIDE_FRONT : SIDE_BACK;
}
// BUGBUG: This should either simply use the implementation in mathlib or cease to exist.
// mathlib implementation is much more efficient. Check to see that VPlane isn't used in
// performance critical code.
inline SideType VPlane::BoxOnPlaneSide( const Vector& vMin, const Vector& vMax ) const
{
int i, firstSide, side;
TableVector vPoints[8] =
{
{ vMin.x, vMin.y, vMin.z },
{ vMin.x, vMin.y, vMax.z },
{ vMin.x, vMax.y, vMax.z },
{ vMin.x, vMax.y, vMin.z },
{ vMax.x, vMin.y, vMin.z },
{ vMax.x, vMin.y, vMax.z },
{ vMax.x, vMax.y, vMax.z },
{ vMax.x, vMax.y, vMin.z },
};
firstSide = GetPointSideExact( vPoints[ 0 ] );
for ( i = 1; i < 8; i++ )
{
side = GetPointSideExact( vPoints[ i ] );
// Does the box cross the plane?
if ( side != firstSide )
return SIDE_ON;
}
// Ok, they're all on the same side, return that.
return firstSide;
}
struct cplane_t
{
Vector normal;
float dist;
char type;
char signbits;
char pad[ 2 ];
};
struct Frustum_t;
class VMatrix
{
public:
VMatrix( );
VMatrix(
vec_t m00, vec_t m01, vec_t m02, vec_t m03,
vec_t m10, vec_t m11, vec_t m12, vec_t m13,
vec_t m20, vec_t m21, vec_t m22, vec_t m23,
vec_t m30, vec_t m31, vec_t m32, vec_t m33
);
// Creates a matrix where the X axis = forward
// the Y axis = left, and the Z axis = up
VMatrix( const Vector& forward, const Vector& left, const Vector& up );
// Construct from a 3x4 matrix
VMatrix( const matrix3x4_t& matrix3x4 );
// Set the values in the matrix.
void Init(
vec_t m00, vec_t m01, vec_t m02, vec_t m03,
vec_t m10, vec_t m11, vec_t m12, vec_t m13,
vec_t m20, vec_t m21, vec_t m22, vec_t m23,
vec_t m30, vec_t m31, vec_t m32, vec_t m33
);
// Initialize from a 3x4
void Init( const matrix3x4_t& matrix3x4 );
// array access
inline float* operator[]( int i )
{
return m[ i ];
}
inline const float* operator[]( int i ) const
{
return m[ i ];
}
// Get a pointer to m[0][0]
inline float* Base( )
{
return &m[ 0 ][ 0 ];
}
inline const float* Base( ) const
{
return &m[ 0 ][ 0 ];
}
void SetLeft( const Vector& vLeft );
void SetUp( const Vector& vUp );
void SetForward( const Vector& vForward );
void GetBasisVectors( Vector& vForward, Vector& vLeft, Vector& vUp ) const;
void SetBasisVectors( const Vector& vForward, const Vector& vLeft, const Vector& vUp );
// Get/set the translation.
Vector& GetTranslation( Vector& vTrans ) const;
void SetTranslation( const Vector& vTrans );
void PreTranslate( const Vector& vTrans );
void PostTranslate( const Vector& vTrans );
matrix3x4_t& As3x4( );
const matrix3x4_t& As3x4( ) const;
void CopyFrom3x4( const matrix3x4_t& m3x4 );
void Set3x4( matrix3x4_t& matrix3x4 ) const;
bool operator==( const VMatrix& src ) const;
bool operator!=( const VMatrix& src ) const { return !( *this == src ); }
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Access the basis vectors.
Vector GetLeft( ) const;
Vector GetUp( ) const;
Vector GetForward( ) const;
Vector GetTranslation( ) const;
#endif
// Matrix->vector operations.
public:
// Multiply by a 3D vector (same as operator*).
void V3Mul( const Vector& vIn, Vector& vOut ) const;
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Applies the rotation (ignores translation in the matrix). (This just calls VMul3x3).
Vector ApplyRotation( const Vector& vVec ) const;
// Multiply by a vector (divides by w, assumes input w is 1).
Vector operator*( const Vector& vVec ) const;
// Multiply by the upper 3x3 part of the matrix (ie: only apply rotation).
Vector VMul3x3( const Vector& vVec ) const;
// Apply the inverse (transposed) rotation (only works on pure rotation matrix)
Vector VMul3x3Transpose( const Vector& vVec ) const;
// Multiply by the upper 3 rows.
Vector VMul4x3( const Vector& vVec ) const;
// Apply the inverse (transposed) transformation (only works on pure rotation/translation)
Vector VMul4x3Transpose( const Vector& vVec ) const;
#endif
// Matrix->plane operations.
public:
// Transform the plane. The matrix can only contain translation and rotation.
void TransformPlane( const VPlane& inPlane, VPlane& outPlane ) const;
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Just calls TransformPlane and returns the result.
VPlane operator*( const VPlane& thePlane ) const;
#endif
// Matrix->matrix operations.
public:
VMatrix& operator=( const VMatrix& mOther );
// Multiply two matrices (out = this * vm).
void MatrixMul( const VMatrix& vm, VMatrix& out ) const;
// Add two matrices.
const VMatrix& operator+=( const VMatrix& other );
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Just calls MatrixMul and returns the result.
VMatrix operator*( const VMatrix& mOther ) const;
// Add/Subtract two matrices.
VMatrix operator+( const VMatrix& other ) const;
VMatrix operator-( const VMatrix& other ) const;
// Negation.
VMatrix operator-( ) const;
// Return inverse matrix. Be careful because the results are undefined
// if the matrix doesn't have an inverse (ie: InverseGeneral returns false).
VMatrix operator~( ) const;
#endif
// Matrix operations.
public:
// Set to identity.
void Identity( );
bool IsIdentity( ) const;
// Setup a matrix for origin and angles.
void SetupMatrixOrgAngles( const Vector& origin, const QAngle& vAngles );
// General inverse. This may fail so check the return!
bool InverseGeneral( VMatrix& vInverse ) const;
// Does a fast inverse, assuming the matrix only contains translation and rotation.
void InverseTR( VMatrix& mRet ) const;
// Usually used for debug checks. Returns true if the upper 3x3 contains
// unit vectors and they are all orthogonal.
bool IsRotationMatrix( ) const;
#ifndef VECTOR_NO_SLOW_OPERATIONS
// This calls the other InverseTR and returns the result.
VMatrix InverseTR( ) const;
// Get the scale of the matrix's basis vectors.
Vector GetScale( ) const;
// (Fast) multiply by a scaling matrix setup from vScale.
VMatrix Scale( const Vector& vScale );
// Normalize the basis vectors.
VMatrix NormalizeBasisVectors( ) const;
// Transpose.
VMatrix Transpose( ) const;
// Transpose upper-left 3x3.
VMatrix Transpose3x3( ) const;
#endif
public:
// The matrix.
vec_t m[4][4];
};
//-----------------------------------------------------------------------------
// Helper functions.
//-----------------------------------------------------------------------------
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Setup an identity matrix.
VMatrix SetupMatrixIdentity( );
// Setup as a scaling matrix.
VMatrix SetupMatrixScale( const Vector& vScale );
// Setup a translation matrix.
VMatrix SetupMatrixTranslation( const Vector& vTranslation );
// Setup a matrix to reflect around the plane.
VMatrix SetupMatrixReflection( const VPlane& thePlane );
// Setup a matrix to project from vOrigin onto thePlane.
VMatrix SetupMatrixProjection( const Vector& vOrigin, const VPlane& thePlane );
// Setup a matrix to rotate the specified amount around the specified axis.
VMatrix SetupMatrixAxisRot( const Vector& vAxis, vec_t fDegrees );
// Setup a matrix from euler angles. Just sets identity and calls MatrixAngles.
VMatrix SetupMatrixAngles( const QAngle& vAngles );
// Setup a matrix for origin and angles.
VMatrix SetupMatrixOrgAngles( const Vector& origin, const QAngle& vAngles );
#endif
#define VMatToString(mat) (static_cast<const char *>(CFmtStr("[ (%f, %f, %f), (%f, %f, %f), (%f, %f, %f), (%f, %f, %f) ]", mat.m[0][0], mat.m[0][1], mat.m[0][2], mat.m[0][3], mat.m[1][0], mat.m[1][1], mat.m[1][2], mat.m[1][3], mat.m[2][0], mat.m[2][1], mat.m[2][2], mat.m[2][3], mat.m[3][0], mat.m[3][1], mat.m[3][2], mat.m[3][3] ))) // ** Note: this generates a temporary, don't hold reference!
//-----------------------------------------------------------------------------
// Returns the point at the intersection on the 3 planes.
// Returns false if it can't be solved (2 or more planes are parallel).
//-----------------------------------------------------------------------------
bool PlaneIntersection( const VPlane& vp1, const VPlane& vp2, const VPlane& vp3, Vector& vOut );
//-----------------------------------------------------------------------------
// These methods are faster. Use them if you want faster code
//-----------------------------------------------------------------------------
void MatrixSetIdentity( VMatrix& dst );
void MatrixTranspose( const VMatrix& src, VMatrix& dst );
void MatrixCopy( const VMatrix& src, VMatrix& dst );
void MatrixMultiply( const VMatrix& src1, const VMatrix& src2, VMatrix& dst );
// Accessors
void MatrixGetColumn( const VMatrix& src, int nCol, Vector* pColumn );
void MatrixSetColumn( VMatrix& src, int nCol, const Vector& column );
void MatrixGetRow( const VMatrix& src, int nCol, Vector* pColumn );
void MatrixSetRow( VMatrix& src, int nCol, const Vector& column );
// Vector3DMultiply treats src2 as if it's a direction vector
void Vector3DMultiply( const VMatrix& src1, const Vector& src2, Vector& dst );
// Vector3DMultiplyPosition treats src2 as if it's a point (adds the translation)
inline void Vector3DMultiplyPosition( const VMatrix& src1, const VectorByValue& src2, Vector& dst );
// Vector3DMultiplyPositionProjective treats src2 as if it's a point
// and does the perspective divide at the end
void Vector3DMultiplyPositionProjective( const VMatrix& src1, const Vector& src2, Vector& dst );
// Vector3DMultiplyPosition treats src2 as if it's a direction
// and does the perspective divide at the end
// NOTE: src1 had better be an inverse transpose to use this correctly
void Vector3DMultiplyProjective( const VMatrix& src1, const Vector& src2, Vector& dst );
// Multiplies the vector by the transpose of the matrix
void Vector3DMultiplyTranspose( const VMatrix& src1, const Vector& src2, Vector& dst );
// Transform a plane
void MatrixTransformPlane( const VMatrix& src, const cplane_t& inPlane, cplane_t& outPlane );
// Transform a plane that has an axis-aligned normal
void MatrixTransformAxisAlignedPlane( const VMatrix& src, int nDim, float flSign, float flDist, cplane_t& outPlane );
void MatrixBuildTranslation( VMatrix& dst, float x, float y, float z );
void MatrixBuildTranslation( VMatrix& dst, const Vector& translation );
inline void MatrixTranslate( VMatrix& dst, const Vector& translation )
{
VMatrix matTranslation, temp;
MatrixBuildTranslation( matTranslation, translation );
MatrixMultiply( dst, matTranslation, temp );
dst = temp;
}
void MatrixBuildRotationAboutAxis( VMatrix& dst, const Vector& vAxisOfRot, float angleDegrees );
void MatrixBuildRotateZ( VMatrix& dst, float angleDegrees );
inline void MatrixRotate( VMatrix& dst, const Vector& vAxisOfRot, float angleDegrees )
{
VMatrix rotation, temp;
MatrixBuildRotationAboutAxis( rotation, vAxisOfRot, angleDegrees );
MatrixMultiply( dst, rotation, temp );
dst = temp;
}
// Builds a rotation matrix that rotates one direction vector into another
void MatrixBuildRotation( VMatrix& dst, const Vector& initialDirection, const Vector& finalDirection );
// Builds a scale matrix
void MatrixBuildScale( VMatrix& dst, float x, float y, float z );
void MatrixBuildScale( VMatrix& dst, const Vector& scale );
// Build a perspective matrix.
// zNear and zFar are assumed to be positive.
// You end up looking down positive Z, X is to the right, Y is up.
// X range: [0..1]
// Y range: [0..1]
// Z range: [0..1]
void MatrixBuildPerspective( VMatrix& dst, float fovX, float fovY, float zNear, float zFar );
//-----------------------------------------------------------------------------
// Given a projection matrix, take the extremes of the space in transformed into world space and
// get a bounding box.
//-----------------------------------------------------------------------------
void CalculateAABBFromProjectionMatrix( const VMatrix& worldToVolume, Vector* pMins, Vector* pMaxs );
//-----------------------------------------------------------------------------
// Given a projection matrix, take the extremes of the space in transformed into world space and
// get a bounding sphere.
//-----------------------------------------------------------------------------
void CalculateSphereFromProjectionMatrix( const VMatrix& worldToVolume, Vector* pCenter, float* pflRadius );
//-----------------------------------------------------------------------------
// Given an inverse projection matrix, take the extremes of the space in transformed into world space and
// get a bounding box.
//-----------------------------------------------------------------------------
void CalculateAABBFromProjectionMatrixInverse( const VMatrix& volumeToWorld, Vector* pMins, Vector* pMaxs );
//-----------------------------------------------------------------------------
// Given an inverse projection matrix, take the extremes of the space in transformed into world space and
// get a bounding sphere.
//-----------------------------------------------------------------------------
void CalculateSphereFromProjectionMatrixInverse( const VMatrix& volumeToWorld, Vector* pCenter, float* pflRadius );
//-----------------------------------------------------------------------------
// Calculate frustum planes given a clip->world space transform.
//-----------------------------------------------------------------------------
void FrustumPlanesFromMatrix( const VMatrix& clipToWorld, Frustum_t& frustum );
//-----------------------------------------------------------------------------
// Setup a matrix from euler angles.
//-----------------------------------------------------------------------------
void MatrixFromAngles( const QAngle& vAngles, VMatrix& dst );
//-----------------------------------------------------------------------------
// Creates euler angles from a matrix
//-----------------------------------------------------------------------------
void MatrixToAngles( const VMatrix& src, QAngle& vAngles );
//-----------------------------------------------------------------------------
// Does a fast inverse, assuming the matrix only contains translation and rotation.
//-----------------------------------------------------------------------------
void MatrixInverseTR( const VMatrix& src, VMatrix& dst );
//-----------------------------------------------------------------------------
// Inverts any matrix at all
//-----------------------------------------------------------------------------
bool MatrixInverseGeneral( const VMatrix& src, VMatrix& dst );
//-----------------------------------------------------------------------------
// Computes the inverse transpose
//-----------------------------------------------------------------------------
void MatrixInverseTranspose( const VMatrix& src, VMatrix& dst );
//-----------------------------------------------------------------------------
// VMatrix inlines.
//-----------------------------------------------------------------------------
inline VMatrix::VMatrix( )
{
}
inline VMatrix::VMatrix(
vec_t m00, vec_t m01, vec_t m02, vec_t m03,
vec_t m10, vec_t m11, vec_t m12, vec_t m13,
vec_t m20, vec_t m21, vec_t m22, vec_t m23,
vec_t m30, vec_t m31, vec_t m32, vec_t m33 )
{
Init(
m00, m01, m02, m03,
m10, m11, m12, m13,
m20, m21, m22, m23,
m30, m31, m32, m33
);
}
inline VMatrix::VMatrix( const matrix3x4_t& matrix3x4 )
{
Init( matrix3x4 );
}
//-----------------------------------------------------------------------------
// Creates a matrix where the X axis = forward
// the Y axis = left, and the Z axis = up
//-----------------------------------------------------------------------------
inline VMatrix::VMatrix( const Vector& xAxis, const Vector& yAxis, const Vector& zAxis )
{
Init(
xAxis.x, yAxis.x, zAxis.x, 0.0f,
xAxis.y, yAxis.y, zAxis.y, 0.0f,
xAxis.z, yAxis.z, zAxis.z, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
);
}
inline void VMatrix::Init(
vec_t m00, vec_t m01, vec_t m02, vec_t m03,
vec_t m10, vec_t m11, vec_t m12, vec_t m13,
vec_t m20, vec_t m21, vec_t m22, vec_t m23,
vec_t m30, vec_t m31, vec_t m32, vec_t m33
)
{
m[ 0 ][ 0 ] = m00;
m[ 0 ][ 1 ] = m01;
m[ 0 ][ 2 ] = m02;
m[ 0 ][ 3 ] = m03;
m[ 1 ][ 0 ] = m10;
m[ 1 ][ 1 ] = m11;
m[ 1 ][ 2 ] = m12;
m[ 1 ][ 3 ] = m13;
m[ 2 ][ 0 ] = m20;
m[ 2 ][ 1 ] = m21;
m[ 2 ][ 2 ] = m22;
m[ 2 ][ 3 ] = m23;
m[ 3 ][ 0 ] = m30;
m[ 3 ][ 1 ] = m31;
m[ 3 ][ 2 ] = m32;
m[ 3 ][ 3 ] = m33;
}
//-----------------------------------------------------------------------------
// Initialize from a 3x4
//-----------------------------------------------------------------------------
inline void VMatrix::Init( const matrix3x4_t& matrix3x4 )
{
memcpy( m, matrix3x4.Base( ), sizeof(matrix3x4_t) );
m[ 3 ][ 0 ] = 0.0f;
m[ 3 ][ 1 ] = 0.0f;
m[ 3 ][ 2 ] = 0.0f;
m[ 3 ][ 3 ] = 1.0f;
}
//-----------------------------------------------------------------------------
// Methods related to the basis vectors of the matrix
//-----------------------------------------------------------------------------
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline Vector VMatrix::GetForward( ) const
{
return Vector( m[ 0 ][ 0 ], m[ 1 ][ 0 ], m[ 2 ][ 0 ] );
}
inline Vector VMatrix::GetLeft( ) const
{
return Vector( m[ 0 ][ 1 ], m[ 1 ][ 1 ], m[ 2 ][ 1 ] );
}
inline Vector VMatrix::GetUp( ) const
{
return Vector( m[ 0 ][ 2 ], m[ 1 ][ 2 ], m[ 2 ][ 2 ] );
}
#endif
inline void VMatrix::SetForward( const Vector& vForward )
{
m[ 0 ][ 0 ] = vForward.x;
m[ 1 ][ 0 ] = vForward.y;
m[ 2 ][ 0 ] = vForward.z;
}
inline void VMatrix::SetLeft( const Vector& vLeft )
{
m[ 0 ][ 1 ] = vLeft.x;
m[ 1 ][ 1 ] = vLeft.y;
m[ 2 ][ 1 ] = vLeft.z;
}
inline void VMatrix::SetUp( const Vector& vUp )
{
m[ 0 ][ 2 ] = vUp.x;
m[ 1 ][ 2 ] = vUp.y;
m[ 2 ][ 2 ] = vUp.z;
}
inline void VMatrix::GetBasisVectors( Vector& vForward, Vector& vLeft, Vector& vUp ) const
{
vForward.Init( m[ 0 ][ 0 ], m[ 1 ][ 0 ], m[ 2 ][ 0 ] );
vLeft.Init( m[ 0 ][ 1 ], m[ 1 ][ 1 ], m[ 2 ][ 1 ] );
vUp.Init( m[ 0 ][ 2 ], m[ 1 ][ 2 ], m[ 2 ][ 2 ] );
}
inline void VMatrix::SetBasisVectors( const Vector& vForward, const Vector& vLeft, const Vector& vUp )
{
SetForward( vForward );
SetLeft( vLeft );
SetUp( vUp );
}
//-----------------------------------------------------------------------------
// Methods related to the translation component of the matrix
//-----------------------------------------------------------------------------
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline Vector VMatrix::GetTranslation( ) const
{
return Vector( m[ 0 ][ 3 ], m[ 1 ][ 3 ], m[ 2 ][ 3 ] );
}
#endif
inline Vector& VMatrix::GetTranslation( Vector& vTrans ) const
{
vTrans.x = m[ 0 ][ 3 ];
vTrans.y = m[ 1 ][ 3 ];
vTrans.z = m[ 2 ][ 3 ];
return vTrans;
}
inline void VMatrix::SetTranslation( const Vector& vTrans )
{
m[ 0 ][ 3 ] = vTrans.x;
m[ 1 ][ 3 ] = vTrans.y;
m[ 2 ][ 3 ] = vTrans.z;
}
//-----------------------------------------------------------------------------
// appply translation to this matrix in the input space
//-----------------------------------------------------------------------------
inline void VMatrix::PreTranslate( const Vector& vTrans )
{
Vector tmp;
Vector3DMultiplyPosition( *this, (const VectorByValue&)vTrans, tmp );
m[ 0 ][ 3 ] = tmp.x;
m[ 1 ][ 3 ] = tmp.y;
m[ 2 ][ 3 ] = tmp.z;
}
//-----------------------------------------------------------------------------
// appply translation to this matrix in the output space
//-----------------------------------------------------------------------------
inline void VMatrix::PostTranslate( const Vector& vTrans )
{
m[ 0 ][ 3 ] += vTrans.x;
m[ 1 ][ 3 ] += vTrans.y;
m[ 2 ][ 3 ] += vTrans.z;
}
inline const matrix3x4_t& VMatrix::As3x4( ) const
{
return *( (const matrix3x4_t*)this );
}
inline matrix3x4_t& VMatrix::As3x4( )
{
return *( (matrix3x4_t*)this );
}
inline void VMatrix::CopyFrom3x4( const matrix3x4_t& m3x4 )
{
memcpy( m, m3x4.Base( ), sizeof(matrix3x4_t) );
m[ 3 ][ 0 ] = m[ 3 ][ 1 ] = m[ 3 ][ 2 ] = 0;
m[ 3 ][ 3 ] = 1;
}
inline void VMatrix::Set3x4( matrix3x4_t& matrix3x4 ) const
{
memcpy( matrix3x4.Base( ), m, sizeof(matrix3x4_t) );
}
//-----------------------------------------------------------------------------
// Matrix math operations
//-----------------------------------------------------------------------------
inline const VMatrix& VMatrix::operator+=( const VMatrix& other )
{
for ( int i = 0; i < 4; i++ )
{
for ( int j = 0; j < 4; j++ )
{
m[ i ][ j ] += other.m[ i ][ j ];
}
}
return *this;
}
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline VMatrix VMatrix::operator+( const VMatrix& other ) const
{
VMatrix ret;
for ( int i = 0; i < 16; i++ )
{
( (float*)ret.m )[ i ] = ( (float*)m )[ i ] + ( (float*)other.m )[ i ];
}
return ret;
}
inline VMatrix VMatrix::operator-( const VMatrix& other ) const
{
VMatrix ret;
for ( int i = 0; i < 4; i++ )
{
for ( int j = 0; j < 4; j++ )
{
ret.m[ i ][ j ] = m[ i ][ j ] - other.m[ i ][ j ];
}
}
return ret;
}
inline VMatrix VMatrix::operator-( ) const
{
VMatrix ret;
for ( int i = 0; i < 16; i++ )
{
( (float*)ret.m )[ i ] = ( (float*)m )[ i ];
}
return ret;
}
#endif // VECTOR_NO_SLOW_OPERATIONS
//-----------------------------------------------------------------------------
// Vector transformation
//-----------------------------------------------------------------------------
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline Vector VMatrix::operator*( const Vector& vVec ) const
{
Vector vRet;
vRet.x = m[ 0 ][ 0 ] * vVec.x + m[ 0 ][ 1 ] * vVec.y + m[ 0 ][ 2 ] * vVec.z + m[ 0 ][ 3 ];
vRet.y = m[ 1 ][ 0 ] * vVec.x + m[ 1 ][ 1 ] * vVec.y + m[ 1 ][ 2 ] * vVec.z + m[ 1 ][ 3 ];
vRet.z = m[ 2 ][ 0 ] * vVec.x + m[ 2 ][ 1 ] * vVec.y + m[ 2 ][ 2 ] * vVec.z + m[ 2 ][ 3 ];
return vRet;
}
inline Vector VMatrix::VMul4x3( const Vector& vVec ) const
{
Vector vResult;
Vector3DMultiplyPosition( *this, (const VectorByValue&)vVec, vResult );
return vResult;
}
inline Vector VMatrix::VMul4x3Transpose( const Vector& vVec ) const
{
Vector tmp = vVec;
tmp.x -= m[ 0 ][ 3 ];
tmp.y -= m[ 1 ][ 3 ];
tmp.z -= m[ 2 ][ 3 ];
return Vector(
m[ 0 ][ 0 ] * tmp.x + m[ 1 ][ 0 ] * tmp.y + m[ 2 ][ 0 ] * tmp.z,
m[ 0 ][ 1 ] * tmp.x + m[ 1 ][ 1 ] * tmp.y + m[ 2 ][ 1 ] * tmp.z,
m[ 0 ][ 2 ] * tmp.x + m[ 1 ][ 2 ] * tmp.y + m[ 2 ][ 2 ] * tmp.z
);
}
inline Vector VMatrix::VMul3x3( const Vector& vVec ) const
{
return Vector(
m[ 0 ][ 0 ] * vVec.x + m[ 0 ][ 1 ] * vVec.y + m[ 0 ][ 2 ] * vVec.z,
m[ 1 ][ 0 ] * vVec.x + m[ 1 ][ 1 ] * vVec.y + m[ 1 ][ 2 ] * vVec.z,
m[ 2 ][ 0 ] * vVec.x + m[ 2 ][ 1 ] * vVec.y + m[ 2 ][ 2 ] * vVec.z
);
}
inline Vector VMatrix::VMul3x3Transpose( const Vector& vVec ) const
{
return Vector(
m[ 0 ][ 0 ] * vVec.x + m[ 1 ][ 0 ] * vVec.y + m[ 2 ][ 0 ] * vVec.z,
m[ 0 ][ 1 ] * vVec.x + m[ 1 ][ 1 ] * vVec.y + m[ 2 ][ 1 ] * vVec.z,
m[ 0 ][ 2 ] * vVec.x + m[ 1 ][ 2 ] * vVec.y + m[ 2 ][ 2 ] * vVec.z
);
}
#endif // VECTOR_NO_SLOW_OPERATIONS
inline vec_t DotProduct(const Vector& a, const Vector& b){
return( a.x*b.x + a.y*b.y + a.z*b.z );
}
inline void VMatrix::V3Mul( const Vector& vIn, Vector& vOut ) const
{
vec_t rw;
rw = 1.0f / ( m[ 3 ][ 0 ] * vIn.x + m[ 3 ][ 1 ] * vIn.y + m[ 3 ][ 2 ] * vIn.z + m[ 3 ][ 3 ] );
vOut.x = ( m[ 0 ][ 0 ] * vIn.x + m[ 0 ][ 1 ] * vIn.y + m[ 0 ][ 2 ] * vIn.z + m[ 0 ][ 3 ] ) * rw;
vOut.y = ( m[ 1 ][ 0 ] * vIn.x + m[ 1 ][ 1 ] * vIn.y + m[ 1 ][ 2 ] * vIn.z + m[ 1 ][ 3 ] ) * rw;
vOut.z = ( m[ 2 ][ 0 ] * vIn.x + m[ 2 ][ 1 ] * vIn.y + m[ 2 ][ 2 ] * vIn.z + m[ 2 ][ 3 ] ) * rw;
}
//-----------------------------------------------------------------------------
// Plane transformation
//-----------------------------------------------------------------------------
inline void VMatrix::TransformPlane( const VPlane& inPlane, VPlane& outPlane ) const
{
Vector vTrans;
Vector3DMultiply( *this, inPlane.m_Normal, outPlane.m_Normal );
outPlane.m_Dist = inPlane.m_Dist * DotProduct( outPlane.m_Normal, outPlane.m_Normal );
outPlane.m_Dist += DotProduct( outPlane.m_Normal, GetTranslation( vTrans ) );
}
//-----------------------------------------------------------------------------
// Other random stuff
//-----------------------------------------------------------------------------
inline void VMatrix::Identity( )
{
MatrixSetIdentity( *this );
}
inline bool VMatrix::IsIdentity( ) const
{
return
m[ 0 ][ 0 ] == 1.0f && m[ 0 ][ 1 ] == 0.0f && m[ 0 ][ 2 ] == 0.0f && m[ 0 ][ 3 ] == 0.0f &&
m[ 1 ][ 0 ] == 0.0f && m[ 1 ][ 1 ] == 1.0f && m[ 1 ][ 2 ] == 0.0f && m[ 1 ][ 3 ] == 0.0f &&
m[ 2 ][ 0 ] == 0.0f && m[ 2 ][ 1 ] == 0.0f && m[ 2 ][ 2 ] == 1.0f && m[ 2 ][ 3 ] == 0.0f &&
m[ 3 ][ 0 ] == 0.0f && m[ 3 ][ 1 ] == 0.0f && m[ 3 ][ 2 ] == 0.0f && m[ 3 ][ 3 ] == 1.0f;
}
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline Vector VMatrix::ApplyRotation( const Vector& vVec ) const
{
return VMul3x3( vVec );
}
inline VMatrix VMatrix::operator~( ) const
{
VMatrix mRet;
InverseGeneral( mRet );
return mRet;
}
#endif