This repository has been archived by the owner on Aug 9, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathretrieval_tasks.py
261 lines (240 loc) · 8.6 KB
/
retrieval_tasks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# coding=utf-8
# Copyright 2023 The Google Research authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""XTREME-UP retrieval tasks."""
import functools
from typing import List, Mapping
import seqio
import tensorflow as tf
from xtreme_up.baseline import tasks_lib
from xtreme_up.evaluation import constants
def split_and_rekey_processor(dataset: tf.data.Dataset,
has_query: bool = True) -> tf.data.Dataset:
"""Prepare texts for retrieval tasks."""
split_map_fn = lambda x: tf.strings.split(x, sep="\t", maxsplit=-1)
def rekey_map_fn(x: List[str]) -> Mapping[str, str]:
qid = x[0]
title = x[1]
candidate = x[2]
if has_query:
query = x[3]
else:
query = ""
candidate = title + " " + candidate
return {"id": qid, "query": query, "candidate": candidate}
dataset = dataset.map(split_map_fn)
return dataset.map(rekey_map_fn)
def to_inference_pair(dataset: tf.data.Dataset, split: str) -> tf.data.Dataset:
"""Transformas data to a single text (either query or candidate) and its id."""
def _to_inference_pair(x: Mapping[str, tf.Tensor]) -> Mapping[str, tf.Tensor]:
example = {"targets": x["id"]}
if split == "query":
example.update({"inputs": x["query"]})
else:
example.update({"inputs": x["candidate"]})
return example
return dataset.map(_to_inference_pair)
def lowercase(dataset: tf.data.Dataset,
features: List[str],
override_feature: bool = False) -> tf.data.Dataset:
"""Lowercase features values specified in |features|."""
def _lowercase(example):
for feature in features:
key = feature if override_feature else f"{feature}_lower"
example[key] = tf.strings.lower(example[feature])
return example
return dataset.map(_lowercase, num_parallel_calls=tf.data.AUTOTUNE)
for model in ('mt5', 'byt5'):
# In-language tasks
tydi_train_tasks = []
for lang in constants.get_languages(task='retrieval_in_lang'):
task_name = f'xtreme_up_retrieval_in_lang_train_{lang}_{model}'
tydi_train_tasks.append(task_name)
split_to_filepattern = tasks_lib.get_files_by_split(
'retrieval_in_lang', lang
)
seqio.TaskRegistry.add(
task_name,
source=seqio.TextLineDataSource(split_to_filepattern),
preprocessors=[
functools.partial(
split_and_rekey_processor, has_query=True
),
functools.partial(
seqio.preprocessors.rekey,
key_map={'inputs': 'query', 'targets': 'candidate'},
),
functools.partial(
lowercase,
features=['inputs', 'targets'],
override_feature=True,
),
seqio.preprocessors.tokenize,
seqio.preprocessors.append_eos_after_trim,
],
output_features=tasks_lib.get_output_features(model),
)
seqio.MixtureRegistry.add(
f'xtreme_up_retrieval_in_lang_train_{model}',
tydi_train_tasks,
default_rate=1.0,
)
# Perform inference to generate embeddings of passages candidates.
in_lang_index_by_split = tasks_lib.get_index_split('retrieval_in_lang')
seqio.TaskRegistry.add(
f'xtreme_up_retrieval_in_lang_inference_candidate_{model}',
source=seqio.TextLineDataSource(
split_to_filepattern=in_lang_index_by_split
),
preprocessors=[
functools.partial(
split_and_rekey_processor, has_query=False
),
functools.partial(
to_inference_pair, split='candidate'
),
functools.partial(
lowercase,
features=['inputs'],
override_feature=True,
),
seqio.preprocessors.tokenize,
seqio.preprocessors.append_eos_after_trim,
],
output_features=tasks_lib.get_output_features(model),
)
# Perform inference to generate embeddings of queries.
tydi_query_tasks = []
for lang in constants.get_languages(task='retrieval_in_lang'):
task_name = f'xtreme_up_retrieval_in_lang_inference_query_{lang}_{model}'
tydi_query_tasks.append(task_name)
split_to_filepattern = tasks_lib.get_files_by_split(
'retrieval_in_lang', lang
)
seqio.TaskRegistry.add(
task_name,
source=seqio.TextLineDataSource(split_to_filepattern),
preprocessors=[
functools.partial(
split_and_rekey_processor, has_query=True
),
functools.partial(
to_inference_pair, split='query'
),
functools.partial(
lowercase,
features=['inputs'],
override_feature=True,
),
seqio.preprocessors.tokenize,
seqio.preprocessors.append_eos_after_trim,
],
output_features=tasks_lib.get_output_features(model),
)
seqio.MixtureRegistry.add(
f'xtreme_up_retrieval_in_lang_inference_query_{model}',
tydi_query_tasks,
default_rate=1.0,
)
# Cross-language tasks
xor_train_tasks = []
for lang in constants.get_languages(task='retrieval_cross_lang'):
task_name = f'xtreme_up_retrieval_cross_lang_train_{lang}_{model}'
xor_train_tasks.append(task_name)
split_to_filepattern = tasks_lib.get_files_by_split(
'retrieval_cross_lang', lang
)
seqio.TaskRegistry.add(
task_name,
source=seqio.TextLineDataSource(split_to_filepattern),
preprocessors=[
functools.partial(
split_and_rekey_processor, has_query=True
),
functools.partial(
seqio.preprocessors.rekey,
key_map={'inputs': 'query', 'targets': 'candidate'},
),
functools.partial(
lowercase,
features=['inputs', 'targets'],
override_feature=True,
),
seqio.preprocessors.tokenize,
seqio.preprocessors.append_eos_after_trim,
],
output_features=tasks_lib.get_output_features(model),
)
seqio.MixtureRegistry.add(
f'xtreme_up_retrieval_cross_lang_train_{model}',
xor_train_tasks,
default_rate=1.0,
)
# Perform inference to generate embeddings of passages candidates.
cross_lang_index_by_split = tasks_lib.get_index_split('retrieval_cross_lang')
seqio.TaskRegistry.add(
f'xtreme_up_retrieval_cross_lang_inference_candidate_{model}',
source=seqio.TextLineDataSource(
split_to_filepattern=cross_lang_index_by_split
),
preprocessors=[
functools.partial(
split_and_rekey_processor, has_query=False
),
functools.partial(
to_inference_pair, split='candidate'
),
functools.partial(
lowercase,
features=['inputs'],
override_feature=True,
),
seqio.preprocessors.tokenize,
seqio.preprocessors.append_eos_after_trim,
],
output_features=tasks_lib.get_output_features(model),
)
# Perform inference to generate embeddings of queries.
xor_query_tasks = []
for lang in constants.get_languages(task='retrieval_cross_lang'):
task_name = f'xtreme_up_retrieval_cross_lang_inference_query_{lang}_{model}'
xor_query_tasks.append(task_name)
split_to_filepattern = tasks_lib.get_files_by_split(
'retrieval_in_lang', lang
)
seqio.TaskRegistry.add(
task_name,
source=seqio.TextLineDataSource(split_to_filepattern),
preprocessors=[
functools.partial(
split_and_rekey_processor, has_query=True
),
functools.partial(
to_inference_pair, split='query'
),
functools.partial(
lowercase,
features=['inputs'],
override_feature=True,
),
seqio.preprocessors.tokenize,
seqio.preprocessors.append_eos_after_trim,
],
output_features=tasks_lib.get_output_features(model),
)
seqio.MixtureRegistry.add(
f'xtreme_up_retrieval_cross_lang_inference_query_{model}',
xor_query_tasks,
default_rate=1.0,
)