-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunpuzzle.py
166 lines (121 loc) · 5.5 KB
/
unpuzzle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import cv2
import numpy as np
import sys
import random
import piece
def get_line_score(img, n, piece_row, piece_col, flag, thres_hold):
score = 0
if flag == 0:
for i in range(piece_col):
if img[piece_row*n, i] > thres_hold:
score += 1
elif img[piece_row*n-1, i] > thres_hold:
score+=1
elif img[piece_row*n+1, i] > thres_hold:
score += 1
else:
for i in range(piece_row):
if img[i, piece_col*n] > thres_hold:
score += 1
elif img[i, piece_col*n-1] > thres_hold:
score+=1
elif img[i, piece_col*n+1] > thres_hold:
score += 1
return score
def vertical_merge(pieces, remainder, piece_row, piece_col, p, q, thres_hold):
merged = pieces[remainder[0]].copy()
merged = pieces[remainder[0]][:piece_row, :piece_col]
remainder.pop(0)
num_merged = 1
merge_info = []
while num_merged < p:
min_line_score = -1
for src_idx in remainder:
for flip_flag_dst in range(4):
merged = cv2.flip(merged, flip_flag_dst % 2)
gray_dst = cv2.cvtColor(merged, cv2.COLOR_BGR2GRAY)
for flip_flag_src in range(4):
pieces[src_idx] = cv2.flip(pieces[src_idx], flip_flag_src % 2)
gray_src = cv2.cvtColor(pieces[src_idx], cv2.COLOR_BGR2GRAY)
tmp_merged = cv2.vconcat([gray_dst, gray_src])
laplacian = cv2.Laplacian(tmp_merged, cv2.CV_8U, ksize=3)
line_score = get_line_score(laplacian, num_merged, piece_row, piece_col, 0, thres_hold)
if min_line_score == -1 or min_line_score > line_score:
merge_info = [flip_flag_dst, flip_flag_src, src_idx]
min_line_score = line_score
if num_merged < p:
for flip_flag_dst in range(merge_info[0]+1):
merged = cv2.flip(merged, flip_flag_dst % 2)
for flip_flag_src in range(merge_info[1]+1):
pieces[merge_info[2]] = cv2.flip(pieces[merge_info[2]], flip_flag_src%2)
merged = cv2.vconcat([merged, pieces[merge_info[2]]])
remainder.pop(remainder.index(merge_info[2]))
num_merged += 1
return merged
def horizontal_merge(pieces, remainder, piece_row, piece_col, p, q, thres_hold):
merged = pieces[remainder[0]].copy()
merged = pieces[remainder[0]][:piece_row, :piece_col]
remainder.pop(0)
num_merged = 1
merge_info = []
while num_merged < q:
# Get minimum diff and save information
min_line_score = -1
for src_idx in remainder:
for flip_flag_dst in range(4):
merged = cv2.flip(merged, flip_flag_dst % 2)
gray_dst = cv2.cvtColor(merged, cv2.COLOR_BGR2GRAY)
for flip_flag_src in range(4):
pieces[src_idx] = cv2.flip( pieces[src_idx], flip_flag_src % 2)
gray_src = cv2.cvtColor(pieces[src_idx], cv2.COLOR_BGR2GRAY)
tmp_merged = cv2.hconcat([gray_dst, gray_src])
laplacian = cv2.Laplacian(tmp_merged, cv2.CV_8U, ksize=3)
line_score = get_line_score(laplacian, num_merged, piece_row, piece_col, 1, thres_hold)
if min_line_score == -1 or min_line_score > line_score:
merge_info = [flip_flag_dst, flip_flag_src, src_idx]
min_line_score = line_score
if num_merged < q:
for flip_flag_dst in range(merge_info[0] + 1):
merged = cv2.flip(merged, flip_flag_dst % 2)
for flip_flag_src in range(merge_info[1] + 1):
pieces[merge_info[2]] = cv2.flip(pieces[merge_info[2]], flip_flag_src % 2)
merged = cv2.hconcat([merged, pieces[merge_info[2]]])
remainder.pop(remainder.index(merge_info[2]))
num_merged += 1
return merged
if __name__ == '__main__':
puzzled_img = cv2.imread("puzzled_image.jpg", cv2.IMREAD_COLOR)
row, col, channel = puzzled_img.shape
p = int(sys.argv[1])
q = int(sys.argv[2])
# Split img to pieces
piece_row = int(row/p)
piece_col = int(col/q)
pieces = []
for i in range(p):
for j in range(q):
pieces.append(puzzled_img[i*piece_row:i*piece_row+piece_row, j*piece_col:j*piece_col+piece_col])
remainder = [i for i in range(p*q)]
ver_thres_hold = 30
hor_thres_hold = 30
if piece_col >= piece_row :
# match vertical images
vertical_pieces = []
for i in range(q):
vertical_pieces.append(vertical_merge(pieces, remainder, piece_row, piece_col, p, q, ver_thres_hold))
# match horizontal images
remainder = [i for i in range(q)]
unpuzzled_img = horizontal_merge(vertical_pieces, remainder, piece_row*p, piece_col, p, q, hor_thres_hold)
else:
# match horizontal images
horizontal_pieces = []
for i in range(p):
horizontal_pieces.append(horizontal_merge(pieces, remainder, piece_row, piece_col, p, q, ver_thres_hold))
# match vertical images
remainder = [i for i in range(p)]
unpuzzled_img = vertical_merge(horizontal_pieces, remainder, piece_row, piece_col*q, p, q, hor_thres_hold)
#save and show result image
cv2.imwrite("unpuzzled_image.jpg", unpuzzled_img)
cv2.imshow("unpuzzled_img", unpuzzled_img)
cv2.waitKey(0)
cv2.destroyAllWindows()