-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathgain_ana.py
156 lines (130 loc) · 4.86 KB
/
gain_ana.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
import pandas as pd
import numpy as np
import json
import os
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
def get_values_mask(val, mask):
lst = list()
assert val.shape == mask.shape
for row in range(val.shape[0]):
for col in range(val.shape[1]):
if mask[row, col]:
lst.append(val[row, col])
return lst
def init_arg():
parser = argparse.ArgumentParser()
parser.add_argument("-i", help='input csv file (with missing values)')
parser.add_argument("-o", help='json file with analysis results')
parser.add_argument("--ref", help='input csv file without missing values')
parser.add_argument(
"--imputed",
help='input csv file were missing values are imputed')
parser.add_argument(
"--target",
help='column name with target values, this column will '
'be excluded from analysis')
parser.add_argument("--description", default='-')
return parser.parse_args()
def get_num_na(df):
return int(sum(np.ravel(np.isnan(df))))
def df_ana_diff(df0, df1):
is_equal = df0.equals(df1)
count_el_diff = 0
if not is_equal:
count_el_diff = sum(np.ravel(df0 != df1))
return {
'equal': bool(is_equal),
'ratio': float(count_el_diff/float(df0.size)),
'ndiff': int(count_el_diff)
}
if __name__ == '__main__':
args = init_arg()
fn_json = args.o
assert fn_json is not None
odir = os.path.dirname(fn_json)
odir = odir if len(odir) else '.'
df = pd.read_csv(args.i)
df_ref = pd.read_csv(args.ref)
df_imputed = pd.read_csv(args.imputed)
label = args.target
features_imputed = [
el.replace('.', ' ').lstrip() for el in df_imputed.columns]
features_ref = [
el.replace('.', ' ').lstrip() for el in df_ref.columns]
df_imputed = pd.DataFrame(
df_imputed.values, columns=features_imputed)
df_ref = pd.DataFrame(
df_ref.values, columns=features_ref)
diff_features = set(features_imputed) - set(features_ref)
if len(diff_features):
print('diff {}'.format(diff_features))
if label is not None:
assert label in features_imputed
assert label in features_ref
features_imputed.remove(label)
features_ref.remove(label)
mask = np.where(np.isnan(df[features_ref].values), True, False)
print(features_imputed, df.columns)
df_imputed_calc = pd.DataFrame(
df_imputed[features_imputed].values, columns=features_imputed)
df_ref_calc = pd.DataFrame(
df_ref[features_ref].values, columns=features_ref)
# scale/normalize dataset
range_scaler = (0, 1)
scaler = MinMaxScaler(feature_range=range_scaler)
scaler.fit(df_ref_calc[features_ref].values)
df_ref_calc = pd.DataFrame(
scaler.transform(
df_ref_calc[features_ref]),
columns=features_ref)
df_imputed_calc = pd.DataFrame(
scaler.transform(
df_imputed_calc[features_imputed]),
columns=features_imputed)
num_na_imputed = get_num_na(df_imputed_calc)
df_imputed_calc = df_imputed_calc.fillna(0)
nmissing = sum(np.ravel(mask))
if not nmissing:
print('warning: no missing values found')
a = sum(sum(np.where(mask, (df_ref_calc - df_imputed_calc) * (
df_ref_calc - df_imputed_calc), 0)))
rmse_final = float(np.sqrt(a/float(nmissing))) if nmissing else 0.0
print('rmse: {:0.3f} {:0.3f} {:0.3f}'.format(
rmse_final, a, nmissing/float(mask.size)))
result_d = {
'nmissing': get_num_na(df[features_ref]),
'rmse': rmse_final,
'nsample': int(df_imputed_calc.size),
'num_na_imputed': num_na_imputed,
'description': args.description
}
missing_mask_01 = np.where(np.isnan(df[features_ref].values), 1.0, 0.0)
testM = missing_mask_01
testX = df_ref_calc.values
Recover_testX = df_imputed_calc.values
diff_a = df_ref_calc.values - Recover_testX
if nmissing:
plt.subplot(2, 1, 1)
ax = sns.distplot(
get_values_mask(diff_a, missing_mask_01),
hist=False, kde=True, kde_kws={'linewidth': 1}, label='diff')
ax.set_title('rmse : {:0.3f}'.format(result_d['rmse']))
plt.subplot(2, 1, 2)
sns.distplot(
get_values_mask(testX, missing_mask_01),
hist=False, kde=True, kde_kws={'linewidth': 1}, label='testX')
sns.distplot(
get_values_mask(Recover_testX, missing_mask_01),
hist=False, kde=True, kde_kws={'linewidth': 1}, label='recoverX')
plt.xlabel('proba')
plt.legend()
plt.grid()
plt.savefig('{}/plot.png'.format(odir))
result_ana_diff = df_ana_diff(df_ref, df_imputed)
result_d['ana_diff'] = result_ana_diff
print(result_d['rmse'])
with open(fn_json, "w") as fp:
json.dump(result_d, fp)