forked from facebookresearch/msn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeit.py
693 lines (600 loc) · 20.1 KB
/
deit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Mostly copy-paste from timm library.
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
import math
from functools import partial
import numpy as np
import torch
import torch.nn as nn
from src.utils import trunc_normal_
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class MLP(nn.Module):
def __init__(
self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = (
self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x, attn
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = MLP(
in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop
)
def forward(self, x, return_attention=False):
y, attn = self.attn(self.norm1(x))
if return_attention:
return attn
x = x + self.drop_path(y)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
"""Image to Patch Embedding"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
num_patches = (img_size // patch_size) * (img_size // patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class ConvEmbed(nn.Module):
"""
3x3 Convolution stems for ViT following ViTC models
"""
def __init__(self, channels, strides, img_size=224, in_chans=3, batch_norm=True):
super().__init__()
# Build the stems
stem = []
channels = [in_chans] + channels
for i in range(len(channels) - 2):
stem += [
nn.Conv2d(
channels[i],
channels[i + 1],
kernel_size=3,
stride=strides[i],
padding=1,
bias=(not batch_norm),
)
]
if batch_norm:
stem += [nn.BatchNorm2d(channels[i + 1])]
stem += [nn.ReLU(inplace=True)]
stem += [nn.Conv2d(channels[-2], channels[-1], kernel_size=1, stride=strides[-1])]
self.stem = nn.Sequential(*stem)
# Comptute the number of patches
stride_prod = int(np.prod(strides))
self.num_patches = (img_size[0] // stride_prod) ** 2
def forward(self, x):
p = self.stem(x)
return p.flatten(2).transpose(1, 2)
class VisionTransformer(nn.Module):
"""Vision Transformer"""
def __init__(
self,
img_size=[224],
patch_size=16,
in_chans=3,
num_classes=0,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=nn.LayerNorm,
conv_stem=False,
conv_stem_channels=None,
conv_stem_strides=None,
**kwargs
):
super().__init__()
self.num_features = self.embed_dim = embed_dim
if conv_stem:
self.patch_embed = ConvEmbed(
conv_stem_channels, conv_stem_strides, in_chans=in_chans, img_size=img_size
)
else:
self.patch_embed = PatchEmbed(
img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim
)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
)
for i in range(depth)
]
)
self.norm = norm_layer(embed_dim)
# Classifier head
self.fc = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
self.pred = None
trunc_normal_(self.pos_embed, std=0.02)
trunc_normal_(self.cls_token, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_in", nonlinearity="relu")
if isinstance(m, nn.Conv2d) and m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x, return_before_head=False, patch_drop=0.0):
if not isinstance(x, list):
x = [x]
idx_crops = torch.cumsum(
torch.unique_consecutive(
torch.tensor([inp.shape[-1] for inp in x]),
return_counts=True,
)[1],
0,
)
start_idx = 0
for end_idx in idx_crops:
_h = self.forward_features(torch.cat(x[start_idx:end_idx]), patch_drop)
_z = self.forward_head(_h)
if start_idx == 0:
h, z = _h, _z
else:
h, z = torch.cat((h, _h)), torch.cat((z, _z))
patch_drop = 0.0
start_idx = end_idx
if return_before_head:
return h, z
return z
def forward_head(self, x):
if self.pred is not None:
return self.pred(x)
return x
def forward_features(self, x, patch_drop):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
x = x + pos_embed
x = self.pos_drop(x)
if patch_drop > 0:
patch_keep = 1.0 - patch_drop
T_H = int(np.floor((x.shape[1] - 1) * patch_keep))
perm = 1 + torch.randperm(x.shape[1] - 1)[:T_H] # keep class token
idx = torch.cat([torch.zeros(1, dtype=perm.dtype, device=perm.device), perm])
x = x[:, idx, :]
for blk in self.blocks:
x = blk(x)
if self.norm is not None:
x = self.norm(x)
x = x[:, 0]
if self.fc is not None:
x = self.fc(x)
return x
def forward_blocks(self, x, num_blocks=1, patch_drop=0.0):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
x = x + pos_embed
x = self.pos_drop(x)
if patch_drop > 0:
patch_keep = 1.0 - patch_drop
T_H = int(np.floor((x.shape[1] - 1) * patch_keep))
perm = 1 + torch.randperm(x.shape[1] - 1)[:T_H] # keep class token
idx = torch.cat([torch.zeros(1, dtype=perm.dtype, device=perm.device), perm])
x = x[:, idx, :]
cls_x = []
for i in range(len(self.blocks)):
x = self.blocks[i](x)
if (len(self.blocks) - i) <= num_blocks:
cls_x.append(x[:, 0])
return torch.cat(cls_x, dim=-1)
def interpolate_pos_encoding(self, x, pos_embed):
npatch = x.shape[1] - 1
N = pos_embed.shape[1] - 1
if npatch == N:
return pos_embed
class_emb = pos_embed[:, 0]
pos_embed = pos_embed[:, 1:]
dim = x.shape[-1]
pos_embed = nn.functional.interpolate(
pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
scale_factor=math.sqrt(npatch / N),
mode="bicubic",
)
pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_emb.unsqueeze(0), pos_embed), dim=1)
def forward_selfattention(self, x):
B, nc, w, h = x.shape
N = self.pos_embed.shape[1] - 1
x = self.patch_embed(x)
# interpolate patch embeddings
dim = x.shape[-1]
w0 = w // self.patch_embed.patch_size
h0 = h // self.patch_embed.patch_size
class_pos_embed = self.pos_embed[:, 0]
patch_pos_embed = self.pos_embed[:, 1:]
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(
0, 3, 1, 2
),
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
mode="bicubic",
)
# sometimes there is a floating point error in the interpolation and so
# we need to pad the patch positional encoding.
if w0 != patch_pos_embed.shape[-2]:
helper = (
torch.zeros(h0)[None, None, None, :]
.repeat(1, dim, w0 - patch_pos_embed.shape[-2], 1)
.to(x.device)
)
patch_pos_embed = torch.cat((patch_pos_embed, helper), dim=-2)
if h0 != patch_pos_embed.shape[-1]:
helper = (
torch.zeros(w0)[None, None, :, None]
.repeat(1, dim, 1, h0 - patch_pos_embed.shape[-1])
.to(x.device)
)
patch_pos_embed = torch.cat((patch_pos_embed, helper), dim=-1)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
pos_embed = torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = x + pos_embed
x = self.pos_drop(x)
for i, blk in enumerate(self.blocks):
if i < len(self.blocks) - 1:
x = blk(x)
else:
return blk(x, return_attention=True)
def forward_return_n_last_blocks(self, x, n=1, return_patch_avgpool=False):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
x = x + pos_embed
x = self.pos_drop(x)
# we will return the [CLS] tokens from the `n` last blocks
output = []
for i, blk in enumerate(self.blocks):
x = blk(x)
if len(self.blocks) - i <= n:
output.append(self.norm(x)[:, 0])
if return_patch_avgpool:
x = self.norm(x)
# In addition to the [CLS] tokens from the `n` last blocks, we also return
# the patch tokens from the last block. This is useful for linear eval.
output.append(torch.mean(x[:, 1:], dim=1))
return torch.cat(output, dim=-1)
def deit_tiny(patch_size=16, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=192,
depth=12,
num_heads=3,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
def deit_small(patch_size=16, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=384,
depth=12,
num_heads=6,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
def deit_small_p8(patch_size=8, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=384,
depth=12,
num_heads=6,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
def deit_small_p7(patch_size=7, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=384,
depth=12,
num_heads=6,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
def vitc_4gf(patch_size=16, **kwargs):
channels = [48, 96, 192, 384, 384]
strides = [2, 2, 2, 2, 1]
model = VisionTransformer(
patch_size=patch_size,
embed_dim=384,
depth=11,
num_heads=6,
mlp_ratio=3,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
conv_stem=True,
conv_stem_channels=channels,
conv_stem_strides=strides,
**kwargs
)
return model
def deit_small_convstem(patch_size=16, **kwargs):
channels = [48, 96, 192, 384, 384]
strides = [2, 2, 2, 2, 1]
model = VisionTransformer(
patch_size=patch_size,
embed_dim=384,
depth=11,
num_heads=6,
mlp_ratio=6,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
conv_stem=True,
conv_stem_channels=channels,
conv_stem_strides=strides,
**kwargs
)
return model
def deit_base_p8(patch_size=8, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
def deit_base_p7(patch_size=7, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
def deit_base_p4(patch_size=4, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
def deit_base(patch_size=16, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
def deit_large_p7(patch_size=7, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
def deit_large_p8(patch_size=8, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
def deit_large(patch_size=16, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
def deit_huge(patch_size=16, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=1280,
depth=32,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
def deit_huge_p8(patch_size=8, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=1280,
depth=32,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
def deit_huge_p7(patch_size=7, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=1280,
depth=32,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
def deit_huge_p10(patch_size=10, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=1280,
depth=32,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model