This repository has been archived by the owner on Sep 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 138
/
Copy pathlearn_kmeans.py
147 lines (129 loc) · 3.92 KB
/
learn_kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import sys
import numpy as np
from sklearn.cluster import MiniBatchKMeans
import joblib
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("learn_kmeans")
def get_km_model(
n_clusters,
init,
max_iter,
batch_size,
tol,
max_no_improvement,
n_init,
reassignment_ratio,
):
return MiniBatchKMeans(
n_clusters=n_clusters,
init=init,
max_iter=max_iter,
batch_size=batch_size,
verbose=1,
compute_labels=False,
tol=tol,
max_no_improvement=max_no_improvement,
init_size=None,
n_init=n_init,
reassignment_ratio=reassignment_ratio,
)
def load_feature_shard(feat_dir, split, nshard, rank, percent):
feat_path = f"{feat_dir}/{split}_{rank}_{nshard}.npy"
leng_path = f"{feat_dir}/{split}_{rank}_{nshard}.len"
with open(leng_path, "r") as f:
lengs = [int(line.rstrip()) for line in f]
offsets = [0] + np.cumsum(lengs[:-1]).tolist()
if percent < 0:
return np.load(feat_path, mmap_mode="r")
else:
nsample = int(np.ceil(len(lengs) * percent))
indices = np.random.choice(len(lengs), nsample, replace=False)
feat = np.load(feat_path, mmap_mode="r")
sampled_feat = np.concatenate(
[feat[offsets[i]: offsets[i] + lengs[i]] for i in indices], axis=0
)
logger.info(
(
f"sampled {nsample} utterances, {len(sampled_feat)} frames "
f"from shard {rank}/{nshard}"
)
)
return sampled_feat
def load_feature(feat_dir, split, nshard, seed, percent):
assert percent <= 1.0
feat = np.concatenate(
[
load_feature_shard(feat_dir, split, nshard, r, percent)
for r in range(nshard)
],
axis=0,
)
logging.info(f"loaded feature with dimension {feat.shape}")
return feat
def learn_kmeans(
feat_dir,
split,
nshard,
km_path,
n_clusters,
seed,
percent,
init,
max_iter,
batch_size,
tol,
n_init,
reassignment_ratio,
max_no_improvement,
):
np.random.seed(seed)
feat = load_feature(feat_dir, split, nshard, seed, percent)
km_model = get_km_model(
n_clusters,
init,
max_iter,
batch_size,
tol,
max_no_improvement,
n_init,
reassignment_ratio,
)
km_model.fit(feat)
joblib.dump(km_model, km_path)
inertia = -km_model.score(feat) / len(feat)
logger.info("total intertia: %.5f", inertia)
logger.info("finished successfully")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("feat_dir", type=str)
parser.add_argument("split", type=str)
parser.add_argument("nshard", type=int)
parser.add_argument("km_path", type=str)
parser.add_argument("n_clusters", type=int)
parser.add_argument("--seed", default=0, type=int)
parser.add_argument(
"--percent", default=-1, type=float, help="sample a subset; -1 for all"
)
parser.add_argument("--init", default="k-means++")
parser.add_argument("--max_iter", default=100, type=int)
parser.add_argument("--batch_size", default=10000, type=int)
parser.add_argument("--tol", default=0.0, type=float)
parser.add_argument("--max_no_improvement", default=100, type=int)
parser.add_argument("--n_init", default=20, type=int)
parser.add_argument("--reassignment_ratio", default=0.0, type=float)
args = parser.parse_args()
logging.info(str(args))
learn_kmeans(**vars(args))