forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
811 lines (740 loc) · 32.7 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
import numbers
import os
import os.path as osp
import pickle
import queue as Queue
import threading
import logging
import numbers
import math
import pandas as pd
from scipy.spatial.transform import Rotation
import mxnet as mx
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset
from skimage import transform as sktrans
import cv2
import albumentations as A
from albumentations.pytorch import ToTensorV2
from augs import *
def Rt26dof(R_t, degrees=False):
yaw_gt, pitch_gt, roll_gt = Rotation.from_matrix(R_t[:3, :3].T).as_euler('yxz', degrees=degrees)
label_euler = np.array([pitch_gt, yaw_gt, roll_gt])
label_translation = R_t[3, :3]
label_6dof = np.concatenate([label_euler, label_translation])
return label_6dof
def gen_target_pip(target, target_map, target_local_x, target_local_y):
map_channel, map_height, map_width = target_map.shape
target = target.reshape(-1, 2)
assert map_channel == target.shape[0]
for i in range(map_channel):
mu_x = int(math.floor(target[i][0] * map_width))
mu_y = int(math.floor(target[i][1] * map_height))
mu_x = max(0, mu_x)
mu_y = max(0, mu_y)
mu_x = min(mu_x, map_width-1)
mu_y = min(mu_y, map_height-1)
target_map[i, mu_y, mu_x] = 1
shift_x = target[i][0] * map_width - mu_x
shift_y = target[i][1] * map_height - mu_y
target_local_x[i, mu_y, mu_x] = shift_x
target_local_y[i, mu_y, mu_x] = shift_y
return target_map, target_local_x, target_local_y
def get_tris(cfg):
import trimesh
data_root = Path(cfg.root_dir)
obj_path = data_root / 'resources/example.obj'
mesh = trimesh.load(obj_path, process=False)
verts_template = np.array(mesh.vertices, dtype=np.float32)
tris = np.array(mesh.faces, dtype=np.int32)
#print(verts_template.shape, tris.shape)
return tris
class BackgroundGenerator(threading.Thread):
def __init__(self, generator, local_rank, max_prefetch=6):
super(BackgroundGenerator, self).__init__()
self.queue = Queue.Queue(max_prefetch)
self.generator = generator
self.local_rank = local_rank
self.daemon = True
self.start()
def run(self):
torch.cuda.set_device(self.local_rank)
for item in self.generator:
self.queue.put(item)
self.queue.put(None)
def next(self):
next_item = self.queue.get()
if next_item is None:
raise StopIteration
return next_item
def __next__(self):
return self.next()
def __iter__(self):
return self
class DataLoaderX(DataLoader):
def __init__(self, local_rank, **kwargs):
super(DataLoaderX, self).__init__(**kwargs)
self.stream = torch.cuda.Stream(local_rank)
self.local_rank = local_rank
def __iter__(self):
self.iter = super(DataLoaderX, self).__iter__()
self.iter = BackgroundGenerator(self.iter, self.local_rank)
self.preload()
return self
def preload(self):
self.batch = next(self.iter, None)
if self.batch is None:
return None
with torch.cuda.stream(self.stream):
for k in range(len(self.batch)):
self.batch[k] = self.batch[k].to(device=self.local_rank,
non_blocking=True)
def __next__(self):
torch.cuda.current_stream().wait_stream(self.stream)
batch = self.batch
if batch is None:
raise StopIteration
self.preload()
return batch
class FaceDataset(Dataset):
def __init__(self, cfg, is_train=True, is_test=False, local_rank=0):
super(FaceDataset, self).__init__()
self.data_root = Path(cfg.root_dir)
self.input_size = cfg.input_size
self.transform = get_aug_transform(cfg)
self.local_rank = local_rank
self.is_test = is_test
txt_path = self.data_root / 'resources/projection_matrix.txt'
self.M_proj = np.loadtxt(txt_path, dtype=np.float32)
if is_test:
data_root = Path(cfg.root_dir)
csv_path = data_root / 'list/WCPA_track2_test.csv'
self.df = pd.read_csv(csv_path, dtype={'subject_id': str, 'facial_action': str, 'img_id': str})
else:
if is_train:
self.df = pd.read_csv(osp.join(cfg.cache_dir, 'train_list.csv'), dtype={'subject_id': str, 'facial_action': str, 'img_id': str})
else:
self.df = pd.read_csv(osp.join(cfg.cache_dir, 'val_list.csv'), dtype={'subject_id': str, 'facial_action': str, 'img_id': str})
self.label_6dof_mean = [-0.018197, -0.017891, 0.025348, -0.005368, 0.001176, -0.532206] # mean of pitch, yaw, roll, tx, ty, tz
self.label_6dof_std = [0.314015, 0.271809, 0.081881, 0.022173, 0.048839, 0.065444] # std of pitch, yaw, roll, tx, ty, tz
self.align_face = cfg.align_face
if not self.align_face:
self.dst_pts = np.float32([
[0, 0],
[0, cfg.input_size- 1],
[cfg.input_size- 1, 0]
])
else:
dst_pts = np.array([
[38.2946, 51.6963],
[73.5318, 51.5014],
[56.0252, 71.7366],
[41.5493, 92.3655],
[70.7299, 92.2041] ], dtype=np.float32 )
new_size = 144
dst_pts[:,0] += ((new_size-112)//2)
dst_pts[:,1] += 8
dst_pts[:,:] *= (self.input_size/float(new_size))
self.dst_pts = dst_pts
if local_rank==0:
logging.info('data_transform_list:%s'%self.transform)
logging.info('len:%d'%len(self.df))
self.is_test_aug = False
self.eye_dataset = None
if cfg.eyes is not None:
from eye_dataset import EyeDataset
self.eye_dataset = EyeDataset(cfg.eyes['root'])
def set_test_aug(self):
if not self.is_test_aug:
from easydict import EasyDict as edict
cfg = edict()
cfg.aug_modes = ['test-aug']
cfg.input_size = self.input_size
cfg.task = 0
self.transform = get_aug_transform(cfg)
self.is_test_aug = True
def get_names(self, index):
subject_id = self.df['subject_id'][index]
facial_action = self.df['facial_action'][index]
img_id = self.df['img_id'][index]
return subject_id, facial_action, img_id
def __getitem__(self, index):
subject_id = self.df['subject_id'][index]
facial_action = self.df['facial_action'][index]
img_id = self.df['img_id'][index]
img_path = self.data_root / 'image' / subject_id / facial_action / f'{img_id}_ar.jpg'
npz_path = self.data_root / 'info' / subject_id / facial_action / f'{img_id}_info.npz'
txt_path = self.data_root / '68landmarks' / subject_id / facial_action / f'{img_id}_68landmarks.txt'
#if not osp.exists(img_path):
# continue
#print(img_path)
img_raw = cv2.imread(str(img_path))
#if img_raw is None:
# print('XXX ERR:', img_path)
img_raw = cv2.cvtColor(img_raw, cv2.COLOR_BGR2RGB)
#print(img_raw.shape)
img_h, img_w, _ = img_raw.shape
pts68 = np.loadtxt(txt_path, dtype=np.int32)
x_min, y_min = pts68.min(axis=0)
x_max, y_max = pts68.max(axis=0)
x_center = (x_min + x_max) / 2
y_center = (y_min + y_max) / 2
w, h = x_max - x_min, y_max - y_min
if not self.align_face:
size = max(w, h)
ss = np.array([0.75, 0.75, 0.85, 0.65]) # predefined expand size
left = x_center - ss[0] * size
right = x_center + ss[1] * size
top = y_center - ss[2] * size
bottom = y_center + ss[3] * size
src_pts = np.float32([
[left, top],
[left, bottom],
[right, top]
])
tform = cv2.getAffineTransform(src_pts, self.dst_pts)
else:
src_pts = np.float32([
(pts68[36] + pts68[39])/2,
(pts68[42] + pts68[45])/2,
pts68[30],
pts68[48],
pts68[54]
])
tf = sktrans.SimilarityTransform()
tf.estimate(src_pts, self.dst_pts)
tform = tf.params[0:2,:]
img_local = cv2.warpAffine(img_raw, tform, (self.input_size,)*2, flags=cv2.INTER_CUBIC)
fake_points2d = np.ones( (1,2), dtype=np.float32) * (self.input_size//2)
#tform_inv = cv2.invertAffineTransform(tform)
#img_global = cv2.warpAffine(img_local, tform_inv, (img_w, img_h), borderValue=0.0)
#img_global = cv2.resize(img_global, (self.input_size, self.input_size))
if self.transform is not None:
t = self.transform(image=img_local, keypoints=fake_points2d)
img_local = t['image']
if self.is_test_aug:
height, width = img_local.shape[:2]
for trans in t["replay"]["transforms"]:
if trans['__class_fullname__']=='ShiftScaleRotate' and trans['applied']:
param = trans['params']
dx, dy, angle, scale = param['dx'], param['dy'], param['angle'], param['scale']
center = (width / 2, height / 2)
matrix = cv2.getRotationMatrix2D(center, angle, scale)
matrix[0, 2] += dx * width
matrix[1, 2] += dy * height
new_matrix = np.identity(3)
new_matrix[:2,:3] = matrix
old_tform = np.identity(3)
old_tform[:2,:3] = tform
#new_tform = np.dot(old_tform, new_matrix)
new_tform = np.dot(new_matrix, old_tform)
#print('label_tform:')
#print(label_tform.flatten())
#print(new_matrix.flatten())
#print(new_tform.flatten())
tform = new_tform[:2,:3]
break
#print('trans param:', param)
#img_global = self.transform(image=img_global)['image']
tform_tensor = torch.tensor(tform, dtype=torch.float32)
d = {'img_local': img_local, 'tform': tform_tensor}
if self.eye_dataset is not None:
eye_key = str(Path('image') / subject_id / facial_action / f'{img_id}_ar.jpg')
#print(eye_key)
eyel, eyer = self.eye_dataset.get(eye_key, to_homo=True)
if eyel is not None:
#print(eye_key, el_inv.shape, er_inv.shape)
d['eye_world_left'] = torch.tensor(eyel, dtype=torch.float32)
d['eye_world_right'] = torch.tensor(eyer, dtype=torch.float32)
if not self.is_test:
M = np.load(npz_path)
#yaw_gt, pitch_gt, roll_gt = Rotation.from_matrix(M['R_t'][:3, :3].T).as_euler('yxz', degrees=False)
#label_euler = np.array([pitch_gt, yaw_gt, roll_gt])
#label_translation = M['R_t'][3, :3]
#label_6dof = np.concatenate([label_euler, label_translation])
#label_6dof = (label_6dof - self.label_6dof_mean) / self.label_6dof_std
#label_6dof_tensor = torch.tensor(label_6dof, dtype=torch.float32)
#label_verts = M['verts'] * 10.0 # roughly [-1, 1]
#label_verts_tensor = torch.tensor(label_verts, dtype=torch.float32)
#return img_local, label_verts_tensor, label_6dof_tensor
label_verts_tensor = torch.tensor(M['verts'], dtype=torch.float32)
label_Rt_tensor = torch.tensor(M['R_t'], dtype=torch.float32)
d['verts'] = label_verts_tensor
d['rt'] = label_Rt_tensor
#return img_local, img_global, label_verts_tensor, label_Rt_tensor, tform_tensor
#return img_local, label_verts_tensor, label_Rt_tensor, tform_tensor
else:
#return img_local, img_global, tform_tensor
index_tensor = torch.tensor(index, dtype=torch.long)
d['index'] = index_tensor
#return img_local, tform_tensor, index_tensor
return d
def __len__(self):
return len(self.df)
class MXFaceDataset(Dataset):
def __init__(self, cfg, is_train=True, norm_6dof=True, degrees_6dof=False, local_rank=0):
super(MXFaceDataset, self).__init__()
self.is_train = is_train
self.data_root = Path(cfg.root_dir)
self.input_size = cfg.input_size
self.transform = get_aug_transform(cfg)
self.local_rank = local_rank
self.use_trainval = cfg.use_trainval
self.use_eye = cfg.eyes is not None
if is_train:
#self.df = pd.read_csv(osp.join(cfg.cache_dir, 'train_list.csv'), dtype={'subject_id': str, 'facial_action': str, 'img_id': str})
path_imgrec = os.path.join(cfg.cache_dir, 'train.rec')
path_imgidx = os.path.join(cfg.cache_dir, 'train.idx')
self.imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r')
self.imgidx = list(self.imgrec.keys)
self.imggroup = [0] * len(self.imgidx)
self.size_train = len(self.imgidx)
if self.use_trainval:
assert not cfg.sampling_hard
path_imgrec = os.path.join(cfg.cache_dir, 'val.rec')
path_imgidx = os.path.join(cfg.cache_dir, 'val.idx')
self.imgrec2 = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r')
imgidx2 = list(self.imgrec2.keys)
self.imggroup += [1] * len(imgidx2)
self.imgidx += imgidx2
else:
#self.df = pd.read_csv(osp.join(cfg.cache_dir, 'val_list.csv'), dtype={'subject_id': str, 'facial_action': str, 'img_id': str})
path_imgrec = os.path.join(cfg.cache_dir, 'val.rec')
path_imgidx = os.path.join(cfg.cache_dir, 'val.idx')
self.imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r')
self.imgidx = list(self.imgrec.keys)
self.imggroup = [0] * len(self.imgidx)
self.imgidx = np.array(self.imgidx)
self.imggroup = np.array(self.imggroup)
if cfg.sampling_hard and is_train:
meta = np.load(os.path.join(cfg.cache_dir, 'train.meta.npy'))
assert meta.shape[0]==len(self.imgidx)
new_imgidx = []
for i in range(len(self.imgidx)):
idx = self.imgidx[i]
assert i==idx
pose = np.abs(meta[i,:2])
#repeat = np.sum(pose>=35)*3+1
if np.max(pose)<15:
repeat = 2
else:
repeat = 1
new_imgidx += [idx]*repeat
if local_rank==0:
print('new-imgidx:', len(self.imgidx), len(new_imgidx))
self.imgidx = np.array(new_imgidx)
self.label_6dof_mean = [-0.018197, -0.017891, 0.025348, -0.005368, 0.001176, -0.532206] # mean of pitch, yaw, roll, tx, ty, tz
self.label_6dof_std = [0.314015, 0.271809, 0.081881, 0.022173, 0.048839, 0.065444] # std of pitch, yaw, roll, tx, ty, tz
txt_path = self.data_root / 'resources/projection_matrix.txt'
self.M_proj = np.loadtxt(txt_path, dtype=np.float32)
self.M1 = np.array([
[400.0, 0, 0, 0],
[ 0, 400.0, 0, 0],
[ 0, 0, 1, 0],
[400.0, 400.0, 0, 1]
])
self.dst_pts = np.float32([
[0, 0],
[0, cfg.input_size- 1],
[cfg.input_size- 1, 0]
])
self.norm_6dof = norm_6dof
self.degrees_6dof = degrees_6dof
self.task = cfg.task
self.num_verts = cfg.num_verts
self.loss_pip = cfg.loss_pip
self.net_stride = 32
if local_rank==0:
logging.info('data_transform_list:%s'%self.transform)
logging.info('len:%d'%len(self.imgidx))
logging.info('glen:%d'%len(self.imggroup))
self.is_test_aug = False
self.enable_flip = cfg.enable_flip
self.flipindex = cfg.flipindex.copy()
self.verts3d_central_index = cfg.verts3d_central_index
self.eye_dataset = None
self.use_eye = False
if cfg.eyes is not None:
#from eye_dataset import EyeDataset
#self.eye_dataset = EyeDataset(cfg.eyes['root'], load_data=False)
self.use_eye = True
def set_test_aug(self):
if not self.is_test_aug:
from easydict import EasyDict as edict
cfg = edict()
cfg.aug_modes = ['test-aug']
cfg.input_size = self.input_size
cfg.task = 0
self.transform = get_aug_transform(cfg)
self.is_test_aug = True
def __getitem__(self, index):
idx = self.imgidx[index]
group = self.imggroup[index]
if group==0:
imgrec = self.imgrec
elif group==1:
imgrec = self.imgrec2
elif group==2:
imgrec = self.imgrec3
s = imgrec.read_idx(idx)
header, img = mx.recordio.unpack(s)
hlabel = header.label
img = mx.image.imdecode(img).asnumpy() #rgb numpy
label_verts = np.array(hlabel[:1220*3], dtype=np.float32).reshape(-1,3)
label_Rt = np.array(hlabel[1220*3:1220*3+16], dtype=np.float32).reshape(4,4)
label_tform = np.array(hlabel[1220*3+16:1220*3+16+6], dtype=np.float32).reshape(2,3)
label_6dof = Rt26dof(label_Rt, self.degrees_6dof)
if self.norm_6dof:
label_6dof = (label_6dof - self.label_6dof_mean) / self.label_6dof_std
label_6dof_tensor = torch.tensor(label_6dof, dtype=torch.float32)
el_inv = None
er_inv = None
if self.use_eye:
a = 1220*3+16+6
el_inv = np.array(hlabel[a:a+481*3], dtype=np.float32).reshape(-1,3)
a+=481*3
er_inv = np.array(hlabel[a:a+481*3], dtype=np.float32).reshape(-1,3)
#el_inv = torch.tensor(el_inv, dtype=torch.float32)
#er_inv = torch.tensor(er_inv, dtype=torch.float32)
#eye_verts = [el_inv, er_inv]
eye_verts = np.concatenate( (el_inv, er_inv), axis=0 )
#img_local = None
img_raw = None
#if self.task==0 or self.task==2:
# img_raw = img[:,self.input_size:,:]
#if self.task==0 or self.task==1 or self.task==3:
# img_local = img[:,:self.input_size,:]
assert img.shape[0]==img.shape[1] and img.shape[0]>=self.input_size
if img.shape[0]>self.input_size:
scale = float(self.input_size) / img.shape[0]
#print('scale:', scale)
#src_pts = np.float32([
# [0, 0],
# [0, 799],
# [799, 0]
#])
#tform = cv2.getAffineTransform(src_pts, self.dst_pts)
#new_tform = np.identity(3)
#new_tform[:2,:3] = tform
#label_tform = np.dot(new_tform, label_tform.T).T
src_pts = np.float32([
[0, 0, 1],
[0, 799, 1],
[799, 0, 1]
])
dst_pts = np.dot(label_tform, src_pts.T).T
dst_pts *= scale
dst_pts = dst_pts.copy()
src_pts = src_pts[:,:2].copy()
#print('index:', index)
#print(src_pts.shape, dst_pts.shape)
#print(label_tform.shape)
#print(src_pts.dtype)
#print(dst_pts.dtype)
tform = cv2.getAffineTransform(src_pts, dst_pts)
label_tform = tform
img = cv2.resize(img, (self.input_size, self.input_size))
img_local = img
need_points2d = (self.task==0 or self.task==3)
if need_points2d:
ones = np.ones([label_verts.shape[0], 1])
verts_homo = np.concatenate([label_verts, ones], axis=1)
verts = verts_homo @ label_Rt @ self.M_proj @ self.M1
w_ = verts[:, [3]]
verts = verts / w_
points2d = verts[:, :3]
points2d[:, 1] = 800.0 - points2d[:, 1]
verts2d = points2d[:,:2].copy()
points2d[:,2] = 1.0
points2d = np.dot(label_tform, points2d.T).T
else:
points2d = np.ones( (1,2), dtype=np.float32) * (self.input_size//2)
if self.use_eye:
verts_homo = eye_verts
if verts_homo.shape[1] == 3:
ones = np.ones([verts_homo.shape[0], 1])
verts_homo = np.concatenate([verts_homo, ones], axis=1)
verts_out = verts_homo @ label_Rt @ self.M_proj @ self.M1
w_ = verts_out[:, [3]]
verts_out = verts_out / w_
_points2d = verts_out[:, :3]
_points2d[:, 1] = 800.0 - _points2d[:, 1]
_points2d[:,2] = 1.0
_points2d = np.dot(label_tform, _points2d.T).T
eye_points = _points2d
#if img.shape[0]!=self.input_size:
# assert img.shape[0]>self.input_size
#img = cv2.resize(img, (self.input_size, self.input_size))
#scale = float(self.input_size) / img.shape[0]
#points2d *= scale
if self.transform is not None:
if img_raw is not None:
img_raw = self.transform(image=img_raw, keypoints=points2d)['image']
if img_local is not None:
height, width = img_local.shape[:2]
x = self.transform(image=img_local, keypoints=points2d)
img_local = x['image']
points2d = x['keypoints']
points2d = np.array(points2d, dtype=np.float32)
if self.is_test_aug:
for trans in x["replay"]["transforms"]:
if trans['__class_fullname__']=='ShiftScaleRotate' and trans['applied']:
param = trans['params']
dx, dy, angle, scale = param['dx'], param['dy'], param['angle'], param['scale']
center = (width / 2, height / 2)
matrix = cv2.getRotationMatrix2D(center, angle, scale)
matrix[0, 2] += dx * width
matrix[1, 2] += dy * height
new_matrix = np.identity(3)
new_matrix[:2,:3] = matrix
old_tform = np.identity(3)
old_tform[:2,:3] = label_tform
#new_tform = np.dot(old_tform, new_matrix)
new_tform = np.dot(new_matrix, old_tform)
#print('label_tform:')
#print(label_tform.flatten())
#print(new_matrix.flatten())
#print(new_tform.flatten())
label_tform = new_tform[:2,:3]
break
#print('trans param:', param)
if self.loss_pip:
target_map = np.zeros((self.num_verts, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
target_local_x = np.zeros((self.num_verts, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
target_local_y = np.zeros((self.num_verts, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
target = points2d / self.input_size
target_map, target_local_x, target_local_y = gen_target_pip(target, target_map, target_local_x, target_local_y)
target_map_tensor = torch.tensor(target_map, dtype=torch.float32)
target_x_tensor = torch.tensor(target_local_x, dtype=torch.float32)
target_y_tensor = torch.tensor(target_local_y, dtype=torch.float32)
d['pip_map'] = target_map_tensor
d['pip_x'] = target_x_tensor
d['pip_y'] = target_y_tensor
if self.is_train and self.enable_flip and np.random.random()<0.5:
#if self.local_rank==0:
# print('XXX:', label_verts[:5,:2])
img_local = img_local.flip([2])
x_of_central = 0.0
#x_of_central = label_verts[self.verts3d_central_index,0]
#x_of_central = np.mean(x_of_central)
label_verts = label_verts[self.flipindex,:]
label_verts[:,0] -= x_of_central
label_verts[:,0] *= -1.0
label_verts[:,0] += x_of_central
if need_points2d:
flipped_p2d = points2d[self.flipindex,:].copy()
flipped_p2d[:,0] = self.input_size - 1 - flipped_p2d[:,0]
points2d = flipped_p2d
if self.use_eye:
flipped_p2d = eye_points[self.flipindex,:].copy()
flipped_p2d[:,0] = self.input_size - 1 - flipped_p2d[:,0]
eye_points = flipped_p2d
label_verts_tensor = torch.tensor(label_verts*10.0, dtype=torch.float32)
d = {}
d['img_local'] = img_local
d['verts'] = label_verts_tensor
d['6dof'] = label_6dof_tensor
d['rt'] = torch.tensor(label_Rt, dtype=torch.float32)
if need_points2d:
points2d = points2d / (self.input_size//2) - 1.0
points2d_tensor = torch.tensor(points2d, dtype=torch.float32)
d['points2d'] = points2d_tensor
if self.use_eye:
d['eye_verts'] = torch.tensor(eye_verts, dtype=torch.float32)
eye_points = eye_points / (self.input_size//2) - 1.0
eye_points_tensor = torch.tensor(eye_points, dtype=torch.float32)
d['eye_points'] = eye_points_tensor
loss_weight = 1.0
if group!=0:
loss_weight = 0.0
loss_weight_tensor = torch.tensor(loss_weight, dtype=torch.float32)
d['loss_weight'] = loss_weight_tensor
label_tform_tensor = torch.tensor(label_tform, dtype=torch.float32)
d['tform'] = label_tform_tensor
#if img_local is None:
# image = (img_raw,)
#elif img_raw is None:
# image = (img_local,)
#else:
# image = (img_local,img_raw)
#ret = image + (label_verts_tensor, label_6dof_tensor, points2d_tensor)
if not self.is_train:
idx_tensor = torch.tensor([idx], dtype=torch.long)
d['idx'] = idx_tensor
d['verts2d'] = torch.tensor(verts2d, dtype=torch.float32)
return d
def __len__(self):
return len(self.imgidx)
def test_dataset1(cfg):
cfg.task = 0
is_train = False
center_axis = []
dataset = MXFaceDataset(cfg, is_train=is_train, norm_6dof=False, local_rank=0)
for i in range(len(dataset.flipindex)):
if i==dataset.flipindex[i]:
center_axis.append(i)
print(center_axis)
#dataset.transform = None
print('total:', len(dataset))
total = len(dataset)
#total = 50
list_6dof = []
all_mean_xs = []
for idx in range(total):
#img_local, img_raw, label_verts, label_6dof, = dataset[idx]
#img_local, img_raw, label_verts, label_6dof, points2d, tform, data_idx = dataset[idx]
#img_local, label_verts, label_6dof, points2d, tform, data_idx = dataset[idx]
d = dataset[idx]
img_local = d['img_local']
label_verts = d['verts']
label_6dof = d['6dof']
points2d = d['points2d']
label_verts = label_verts.numpy()
label_6dof = label_6dof.numpy()
points2d = points2d.numpy()
#print(img_local.shape, label_verts.shape, label_6dof.shape, points2d.shape)
verts3d = label_verts / 10.0
xs = []
for c in center_axis:
_x = verts3d[c,0]
xs.append(_x)
_std = np.std(xs)
print(xs)
print(_std)
#print(np.mean(xs))
all_mean_xs.append(np.mean(xs))
if idx%100==0:
print('processing:', idx, np.mean(all_mean_xs))
#print(label_verts[:3,:], label_6dof)
#list_6dof.append(label_6dof)
#print(image.__class__, label_verts.__class__)
#label = list(label_verts.numpy().flatten()) + list(label_6dof.numpy().flatten())
#points2d = label_verts2[:,:2]
#points2d = (points2d+1) * 128.0
#img_local = img_local.numpy()
#img_local = (img_local+1.0) * 128.0
#draw = img_local.astype(np.uint8).transpose( (1,2,0) )[:,:,::-1].copy()
#for i in range(points2d.shape[0]):
# pt = points2d[i].astype(np.int)
# cv2.circle(draw, pt, 2, (255,0,0), 2)
##output_path = "outputs/%d_%.3f_%.3f_%.3f.jpg"%(idx, label_6dof[0], label_6dof[1], label_6dof[2])
#output_path = "outputs/%06d.jpg"%(idx)
#cv2.imwrite(output_path, draw)
#list_6dof = np.array(list_6dof)
#print('MEAN:')
#print(np.mean(list_6dof, axis=0))
def test_loader1(cfg):
cfg.task = 0
is_train = True
dataset = MXFaceDataset(cfg, is_train=is_train, norm_6dof=False, local_rank=0)
loader = DataLoader(dataset, batch_size=64, shuffle=True)
for index, d in enumerate(loader):
#img_local = d['img_local']
label_verts = d['verts']
points2d = d['points2d']
tform = d['tform']
label_verts /= 10.0
points2d = (points2d + 1.0) * (cfg.input_size//2)
tform = tform.numpy()
verts = label_verts.numpy()
points2d = points2d.numpy()
print(verts.shape, points2d.shape, tform.shape)
np.save("temp/verts3d.npy", verts)
np.save("temp/points2d.npy", points2d)
np.save("temp/tform.npy", tform)
break
def test_facedataset1(cfg):
cfg.task = 0
cfg.input_size = 512
dataset = FaceDataset(cfg, is_train=True, local_rank=0)
for idx in range(100000):
img_local, label_verts, label_Rt, tform = dataset[idx]
label_Rt = label_Rt.numpy()
if label_Rt[0,0]>1.0:
print(idx, label_Rt.shape)
print(label_Rt)
break
def test_arcface(cfg):
cfg.task = 0
is_train = True
dataset = MXFaceDataset(cfg, is_train=is_train, norm_6dof=False, local_rank=0)
loader = DataLoader(dataset, batch_size=1, shuffle=True)
for index, d in enumerate(loader):
img = d['img_local'].numpy()
img /= 2.0
img += 0.5
img *= 255.0
img = img[0]
img = img.transpose( (1,2,0) )
img = img.astype(np.uint8)
img = cv2.resize(img, (144,144))
img = img[:,:,::-1]
img = img[8:120,16:128,:]
print(img.shape)
cv2.imwrite("temp/arc_%d.jpg"%index, img)
#np.save("temp/verts3d.npy", verts)
#np.save("temp/points2d.npy", points2d)
#np.save("temp/tform.npy", tform)
if index>100:
break
def test_dataset2(cfg):
cfg.task = 0
is_train = False
center_axis = []
dataset = MXFaceDataset(cfg, is_train=is_train, norm_6dof=False, local_rank=0)
for i in range(len(dataset.flipindex)):
if i==dataset.flipindex[i]:
center_axis.append(i)
print(center_axis)
#dataset.transform = None
print('total:', len(dataset))
total = len(dataset)
total = 50
list_6dof = []
all_mean_xs = []
for idx in range(total):
d = dataset[idx]
img_local = d['img_local']
label_verts = d['verts']
label_6dof = d['6dof']
points2d = d['points2d']
label_verts = label_verts.numpy()
label_6dof = label_6dof.numpy()
points2d = points2d.numpy()
eye_points = d['eye_points'].numpy()
eye_verts = d['eye_verts'].numpy()
print(eye_verts[:5,:])
#print(img_local.shape, label_verts.shape, label_6dof.shape, points2d.shape)
verts3d = label_verts / 10.0
#print(label_verts[:3,:], label_6dof)
#list_6dof.append(label_6dof)
#print(image.__class__, label_verts.__class__)
#label = list(label_verts.numpy().flatten()) + list(label_6dof.numpy().flatten())
#points2d = label_verts2[:,:2]
points2d = (points2d+1) * 128.0
eye_points = (eye_points+1) * 128.0
img_local = img_local.numpy()
img_local = (img_local+1.0) * 128.0
draw = img_local.astype(np.uint8).transpose( (1,2,0) )[:,:,::-1].copy()
for i in range(points2d.shape[0]):
pt = points2d[i].astype(np.int)
cv2.circle(draw, pt, 2, (255,0,0), 2)
for i in range(eye_points.shape[0]):
pt = eye_points[i].astype(np.int)
cv2.circle(draw, pt, 2, (0,255,0), 2)
##output_path = "outputs/%d_%.3f_%.3f_%.3f.jpg"%(idx, label_6dof[0], label_6dof[1], label_6dof[2])
output_path = "outputs/%06d.jpg"%(idx)
cv2.imwrite(output_path, draw)
#list_6dof = np.array(list_6dof)
#print('MEAN:')
#print(np.mean(list_6dof, axis=0))
if __name__ == "__main__":
from utils.utils_config import get_config
#cfg = get_config('configs/r0_a1.py')
cfg = get_config('configs/s2')
#test_loader1(cfg)
#test_facedataset1(cfg)
#test_arcface(cfg)
test_dataset2(cfg)