-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathattack_vqa.py
132 lines (116 loc) · 5.47 KB
/
attack_vqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
'''
* Copyright (c) 2022, salesforce.com, inc.
* All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
* By Junnan Li
'''
import argparse
import os
import ruamel.yaml as yaml
import numpy as np
import random
from pathlib import Path
import importlib
import json
import tensorflow as tf
import tensorflow_hub as hub
from models.blip_pretrain import blip_pretrain
import sys
sys.path.append('../cleverhans')
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
import torch
import torch.backends.cudnn as cudnn
from models.blip_vqa import blip_vqa
import utils
from data import create_dataset, create_sampler, create_loader
from data.vqa_dataset import vqa_collate_fn
from transformers import BertTokenizer
def init_tokenizer():
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer.add_special_tokens({'bos_token': '[DEC]'})
tokenizer.add_special_tokens({'additional_special_tokens': ['[ENC]']})
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
return tokenizer
def main(args, config, config_pretrain):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
#### Dataset ####
print("Creating vqa datasets")
datasets = create_dataset('vqa', config)
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler(datasets, [True, False], num_tasks, global_rank)
else:
samplers = [None, None]
train_loader, test_loader = create_loader(datasets, samplers,
batch_size=[config['batch_size_train'], config['batch_size_test']],
num_workers=[16, 16], is_trains=[True, False],
collate_fns=[vqa_collate_fn, None])
#### Model ####
print("Creating model")
model = blip_vqa(pretrained=config['pretrained'], image_size=config['image_size'],
vit=config['vit'], vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'])
model = model.to(device)
pretrain_model = blip_pretrain(pretrained=config_pretrain['pretrained'], image_size=config_pretrain['image_size'],
vit=config_pretrain['vit'], vit_grad_ckpt=config['vit_grad_ckpt'],
vit_ckpt_layer=config_pretrain['vit_ckpt_layer'],
queue_size=config_pretrain['queue_size'])
pretrain_model = pretrain_model.to(device)
tokenizer = init_tokenizer()
with tf.device('cpu'):
USE_model = hub.load(args.USE_model_path)
f = open(args.correct_idx_store, 'r')
a = list(f)
f.close()
correct_list = [int(l.strip('\n')) for l in a][:5000]
with open(args.correct_pred_store, 'r') as f:
answer_list = json.load(f)
pgd_attack = Adv_attack(model, pretrain_model, tokenizer, device, correct_list,answer_list,USE_model)
pgd_attack.evaluate(test_loader, tokenizer)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config_pre', default='./configs/pretrain.yaml')
parser.add_argument('--config', default='./configs/vqa.yaml')
parser.add_argument('--output_dir', default='output/VQA')
parser.add_argument('--correct_idx_store', default='right_vqa_list.txt')
parser.add_argument('--USE_model_path', default='https://tfhub.dev/google/universal-sentence-encoder-large/5')
parser.add_argument('--correct_pred_store', default='right_vqa_ans_table.txt')
parser.add_argument('--method', default='',type=str)
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=False, type=bool)
args = parser.parse_args()
if args.method=='BERTAttack':
module=importlib.import_module('attack.VQA.adv_attack_BERTattack')
Adv_attack=getattr(module,'Adv_attack')
elif args.method=='BSA':
module = importlib.import_module('attack.VQA.adv_attack_blip')
Adv_attack =getattr(module,'Adv_attack')
elif args.method=='Co-Attack':
module = importlib.import_module('attack.VQA.adv_attack_coattack')
Adv_attack =getattr(module,'Adv_attack')
elif args.method == 'VLAttack':
module = importlib.import_module('attack.VQA.adv_attack_blip_vla')
Adv_attack =getattr(module,'Adv_attack')
else:
print('attack method is not supported!')
raise ValueError
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
config_pretrain = yaml.load(open(args.config_pre, 'r'), Loader=yaml.Loader)
args.result_dir = os.path.join(args.output_dir, 'result')
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
Path(args.result_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config, config_pretrain)