forked from meituan/YOLOv6
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCalibrator.py
executable file
·211 lines (175 loc) · 8.51 KB
/
Calibrator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#
# Modified by Meituan
# 2022.6.24
#
# Copyright 2019 NVIDIA Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import glob
import random
import logging
import cv2
import numpy as np
from PIL import Image
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
logging.basicConfig(level=logging.DEBUG,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S")
logger = logging.getLogger(__name__)
def preprocess_yolov6(image, channels=3, height=224, width=224):
"""Pre-processing for YOLOv6-based Object Detection Models
Parameters
----------
image: PIL.Image
The image resulting from PIL.Image.open(filename) to preprocess
channels: int
The number of channels the image has (Usually 1 or 3)
height: int
The desired height of the image (usually 640)
width: int
The desired width of the image (usually 640)
Returns
-------
img_data: numpy array
The preprocessed image data in the form of a numpy array
"""
# Get the image in CHW format
resized_image = image.resize((width, height), Image.BILINEAR)
img_data = np.asarray(resized_image).astype(np.float32)
if len(img_data.shape) == 2:
# For images without a channel dimension, we stack
img_data = np.stack([img_data] * 3)
logger.debug("Received grayscale image. Reshaped to {:}".format(img_data.shape))
else:
img_data = img_data.transpose([2, 0, 1])
mean_vec = np.array([0.0, 0.0, 0.0])
stddev_vec = np.array([1.0, 1.0, 1.0])
assert img_data.shape[0] == channels
for i in range(img_data.shape[0]):
# Scale each pixel to [0, 1] and normalize per channel.
img_data[i, :, :] = (img_data[i, :, :] / 255.0 - mean_vec[i]) / stddev_vec[i]
return img_data
def get_int8_calibrator(calib_cache, calib_data, max_calib_size, calib_batch_size):
# Use calibration cache if it exists
if os.path.exists(calib_cache):
logger.info("Skipping calibration files, using calibration cache: {:}".format(calib_cache))
calib_files = []
# Use calibration files from validation dataset if no cache exists
else:
if not calib_data:
raise ValueError("ERROR: Int8 mode requested, but no calibration data provided. Please provide --calibration-data /path/to/calibration/files")
calib_files = get_calibration_files(calib_data, max_calib_size)
# Choose pre-processing function for INT8 calibration
preprocess_func = preprocess_yolov6
int8_calibrator = ImageCalibrator(calibration_files=calib_files,
batch_size=calib_batch_size,
cache_file=calib_cache)
return int8_calibrator
def get_calibration_files(calibration_data, max_calibration_size=None, allowed_extensions=(".jpeg", ".jpg", ".png")):
"""Returns a list of all filenames ending with `allowed_extensions` found in the `calibration_data` directory.
Parameters
----------
calibration_data: str
Path to directory containing desired files.
max_calibration_size: int
Max number of files to use for calibration. If calibration_data contains more than this number,
a random sample of size max_calibration_size will be returned instead. If None, all samples will be used.
Returns
-------
calibration_files: List[str]
List of filenames contained in the `calibration_data` directory ending with `allowed_extensions`.
"""
logger.info("Collecting calibration files from: {:}".format(calibration_data))
calibration_files = [path for path in glob.iglob(os.path.join(calibration_data, "**"), recursive=True)
if os.path.isfile(path) and path.lower().endswith(allowed_extensions)]
logger.info("Number of Calibration Files found: {:}".format(len(calibration_files)))
if len(calibration_files) == 0:
raise Exception("ERROR: Calibration data path [{:}] contains no files!".format(calibration_data))
if max_calibration_size:
if len(calibration_files) > max_calibration_size:
logger.warning("Capping number of calibration images to max_calibration_size: {:}".format(max_calibration_size))
random.seed(42) # Set seed for reproducibility
calibration_files = random.sample(calibration_files, max_calibration_size)
return calibration_files
# https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Int8/EntropyCalibrator2.html
class ImageCalibrator(trt.IInt8EntropyCalibrator2):
"""INT8 Calibrator Class for Imagenet-based Image Classification Models.
Parameters
----------
calibration_files: List[str]
List of image filenames to use for INT8 Calibration
batch_size: int
Number of images to pass through in one batch during calibration
input_shape: Tuple[int]
Tuple of integers defining the shape of input to the model (Default: (3, 224, 224))
cache_file: str
Name of file to read/write calibration cache from/to.
preprocess_func: function -> numpy.ndarray
Pre-processing function to run on calibration data. This should match the pre-processing
done at inference time. In general, this function should return a numpy array of
shape `input_shape`.
"""
def __init__(self, calibration_files=[], batch_size=32, input_shape=(3, 224, 224),
cache_file="calibration.cache", use_cv2=False):
super().__init__()
self.input_shape = input_shape
self.cache_file = cache_file
self.batch_size = batch_size
self.batch = np.zeros((self.batch_size, *self.input_shape), dtype=np.float32)
self.device_input = cuda.mem_alloc(self.batch.nbytes)
self.files = calibration_files
self.use_cv2 = use_cv2
# Pad the list so it is a multiple of batch_size
if len(self.files) % self.batch_size != 0:
logger.info("Padding # calibration files to be a multiple of batch_size {:}".format(self.batch_size))
self.files += calibration_files[(len(calibration_files) % self.batch_size):self.batch_size]
self.batches = self.load_batches()
self.preprocess_func = preprocess_yolov6
def load_batches(self):
# Populates a persistent self.batch buffer with images.
for index in range(0, len(self.files), self.batch_size):
for offset in range(self.batch_size):
if self.use_cv2:
image = cv2.imread(self.files[index + offset])
else:
image = Image.open(self.files[index + offset])
self.batch[offset] = self.preprocess_func(image, *self.input_shape)
logger.info("Calibration images pre-processed: {:}/{:}".format(index+self.batch_size, len(self.files)))
yield self.batch
def get_batch_size(self):
return self.batch_size
def get_batch(self, names):
try:
# Assume self.batches is a generator that provides batch data.
batch = next(self.batches)
# Assume that self.device_input is a device buffer allocated by the constructor.
cuda.memcpy_htod(self.device_input, batch)
return [int(self.device_input)]
except StopIteration:
# When we're out of batches, we return either [] or None.
# This signals to TensorRT that there is no calibration data remaining.
return None
def read_calibration_cache(self):
# If there is a cache, use it instead of calibrating again. Otherwise, implicitly return None.
if os.path.exists(self.cache_file):
with open(self.cache_file, "rb") as f:
logger.info("Using calibration cache to save time: {:}".format(self.cache_file))
return f.read()
def write_calibration_cache(self, cache):
with open(self.cache_file, "wb") as f:
logger.info("Caching calibration data for future use: {:}".format(self.cache_file))
f.write(cache)