-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcampaign_6_2_submitted_gbm_totalsalesasinput.r
142 lines (109 loc) · 3.5 KB
/
campaign_6_2_submitted_gbm_totalsalesasinput.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
rm(list=ls())
require(gbm)
cleanInputDataForGBM <- function(X) {
names(X);
for(i in 1:length(X)) {
name = names(X)[i]
print (name)
col = X[,i]
index = which(is.na(col))
if ( substr(name,1,3) == 'Cat' ) {
col[index] = "Unknown"
X[,i] <- as.factor(col)
}
if ( substr(name,1,4) == 'Quan' ) {
column_mean = mean(col, na.rm = TRUE)
col[index] = column_mean
X[,i] <- as.numeric(col)
}
if ( substr(name,1,4) == 'Date' ) {
column_mean = mean(col, na.rm = TRUE)
col[index] = column_mean
X[,i] <- as.numeric(col)
}
result = is.factor(X[,i])
print(result);
}
return (X)
}
computeRMSLE <- function(Ysimulated, Yreal) {
#pick every 3rd row
#Ysimulated <- Ysimulated[seq(1, nrow(Ysimulated), 3), ]
#Yreal <- Yreal[seq(1, nrow(Yreal), 3), ]
#zero out negative elements
Ysimulated <- ifelse(Ysimulated<0,0,Ysimulated)
Yreal <- ifelse(Yreal<0,0,Yreal)
#initialize values
rmsle <- 0.0
n <- 0
#perform calculations
Ysimulated <- log(Ysimulated + 1)
Yreal <- log(Yreal + 1)
#n <- nrow(Yreal) * ncol(Yreal)
#for vectors, n is the length of the vector
n <- length(Yreal)
rmsle <- sqrt(sum((Ysimulated - Yreal)^2)/n)
return (rmsle)
}
#setup data
setwd("C:\\Projects\\R")
data <- read.table(file="TrainingDataset.csv",header=TRUE, sep=",")
testData <- read.table(file="TestDataset.csv",header=TRUE, sep=",")
X <- data[,13:29]
Xtest <- testData[,2:18]
#colnames(Xcats) <- c("Quan_500", "Quan_501", "Quan_502")
#add the difference between two dates as another variable
daysbetweencampaigns <- as.numeric(data[,14]-data[,19])
X <- cbind(X, daysbetweencampaigns)
daysbetweencampaigns <- as.numeric(testData[,3]-testData[,8])
Xtest <- cbind(Xtest, daysbetweencampaigns)
#YMonthlyFractions <- matrix(nrow = 1, ncol = 12)
YMonthlySales <- as.matrix(data[,1:12])
YMonthlySales <- log(YMonthlySales)
YMonthlySales[is.na(YMonthlySales)] <- 0.0
YTotalSales <- as.numeric(data[,1])
for(i in 1:nrow(data)){
YTotalSales[i] <- log(sum(data[i,1:12],na.rm=TRUE))
}
#feed total sales as an input variable
X <- cbind(X, YTotalSales)
#cleanup data - factor variables are still problematic on prediction
X <- cleanInputDataForGBM(X)
Xtest <- cleanInputDataForGBM(Xtest)
ntestRows <- nrow(Xtest)
Ytest <- matrix(nrow = ntestRows, ncol = 12)
#train and cross-validate the model using 10-fold cv
numberOfRows <- nrow(X)
numberOfXColumns <- ncol(X)
rmsles <- rep(0, 10)
ntrees <- 4000
depth <- 5
minObs <- 10
shrink <- 0.001
folds <- 10
gdata <- cbind(YTotalSales,X)
gbmAnnual <- gbm(YTotalSales~. ,data=gdata,
distribution = "gaussian",
n.trees = ntrees,
shrinkage = shrink,
cv.folds = folds)
YTotalSales <- predict.gbm(gbmAnnual, newdata=Xtest, n.trees = ntrees)
Xtest <- cbind(Xtest, YTotalSales)
#estimate and predict individual months' sales
for( i in 1:12 ) {
YThisMonth <- YMonthlySales[,i]
gdata <- cbind(YThisMonth, X)
#fit the model on training data
gbmMonthly <- gbm(YThisMonth~. ,
data=gdata,
distribution = "gaussian",
n.trees = ntrees,
shrinkage = shrink,
cv.folds = folds)
monthlySales <- predict.gbm(gbmMonthly, newdata=Xtest, n.trees = ntrees)
#save monthly sales predictions
Ytest[,i] <- exp(monthlySales)
}
indices = seq(1,ntestRows,1)
Ytest <- cbind(indices,Ytest)
write.csv(Ytest, "campaign_6_totalsales_asinput_gbm.csv", row.names=FALSE)