-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathutils.py
133 lines (112 loc) · 3.67 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import sys
import logging
import shutil
import random
import torch
import numpy as np
from datetime import datetime
def save_checkpoint(
epoch,
model,
optimizer,
scheduler,
lowest_loss,
output_dir,
device,
ema,
name="checkpoint.pt",
):
if ema is not None:
with ema.average_parameters():
checkpoint = {
"epoch": epoch,
"model_state_dict": model.cpu().state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"scheduler_state_dict": scheduler.state_dict(),
"lowest_val_loss": lowest_loss,
}
torch.save(checkpoint, os.path.join(output_dir, name))
model.to(device)
else:
checkpoint = {
"epoch": epoch,
"model_state_dict": model.cpu().state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"scheduler_state_dict": scheduler.state_dict(),
"lowest_val_loss": lowest_loss,
}
torch.save(checkpoint, os.path.join(output_dir, name))
model.to(device)
def load_checkpoint(
model, optimizer, scheduler, output_dir, device, name="checkpoint.pt"
):
checkpoint = torch.load(os.path.join(output_dir, name))
epoch = checkpoint["epoch"]
model.load_state_dict(checkpoint["model_state_dict"])
model.to(device)
if optimizer:
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
if scheduler:
scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
lowest_loss = checkpoint["lowest_val_loss"]
return epoch, lowest_loss
def setup_logger(directory):
logger = logging.getLogger()
logger.setLevel("INFO")
formatter = logging.Formatter(
"%(asctime)s.%(msecs)03d %(levelname)s: %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
ch = logging.StreamHandler(stream=sys.stdout)
ch.setFormatter(formatter)
logger.addHandler(ch)
if directory is not None:
os.makedirs(name=directory, exist_ok=True)
path = os.path.join(directory, "PCAE_run.log")
fh = logging.FileHandler(path)
fh.setFormatter(formatter)
logger.addHandler(fh)
def setup_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
os.environ['CUDA_LAUNCH_BLOCKING'] = str(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def add_row(table, metrics, name):
table.add_row(
[
name,
f"{metrics['mae_e'] * 1e3:.2f}",
f"{metrics['mae_f'] * 1e3:.2f}",
]
)
def add_row_3bpa(table, metrics, name):
table.add_row(
[
name,
f"{metrics['rmse_e'] * 1e3:.2f}",
f"{metrics['rmse_f'] * 1e3:.2f}",
]
)
def make_output_dirs(output_dir='outputs'):
date = datetime.now().strftime('%Y-%m-%d')
time = datetime.now().strftime('%H-%M-%S')
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
current_dir = os.path.join(output_dir, date)
if not os.path.isdir(current_dir):
os.makedirs(current_dir)
current_dir = os.path.join(current_dir, time)
if not os.path.isdir(current_dir):
os.makedirs(current_dir)
return current_dir
def save_code():
root_path = os.getcwd()
output_dir = make_output_dirs(os.path.join(root_path, 'code_copy'))
shutil.copytree(os.path.join(root_path, 'model/'), os.path.join(output_dir, 'model/'))
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)