-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathmace_models.py
217 lines (196 loc) · 7.48 KB
/
mace_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
###########################################################################################
# Implementation of MACE models and other models based E(3)-Equivariant MPNNs
# Authors: Ilyes Batatia, Gregor Simm
# This program is distributed under the MIT License (see MIT.md)
###########################################################################################
from typing import Any, Callable, Dict, List, Optional, Type, Union
import torch
import numpy as np
import torch
from e3nn import o3
from e3nn.util.jit import compile_mode
import torch.nn.functional as F
from torch_scatter import scatter
from mace_block import (
EquivariantProductBasisBlock,
InteractionBlock,
LinearDipoleReadoutBlock,
LinearNodeEmbeddingBlock,
LinearReadoutBlock,
NonLinearDipoleReadoutBlock,
NonLinearReadoutBlock,
RadialEmbeddingBlock,
ScaleShiftBlock,
RealAgnosticResidualInteractionBlock,
RealAgnosticInteractionBlock,
)
from mace_utils import (
compute_fixed_charge_dipole,
get_edge_vectors_and_lengths,
get_outputs,
get_symmetric_displacement,
)
# pylint: disable=C0302
def _broadcast(src: torch.Tensor, other: torch.Tensor, dim: int):
if dim < 0:
dim = other.dim() + dim
if src.dim() == 1:
for _ in range(0, dim):
src = src.unsqueeze(0)
for _ in range(src.dim(), other.dim()):
src = src.unsqueeze(-1)
src = src.expand_as(other)
return src
@torch.jit.script
def scatter_sum(
src: torch.Tensor,
index: torch.Tensor,
dim: int = -1,
out: Optional[torch.Tensor] = None,
dim_size: Optional[int] = None,
reduce: str = "sum",
) -> torch.Tensor:
assert reduce == "sum" # for now, TODO
index = _broadcast(index, src, dim)
if out is None:
size = list(src.size())
if dim_size is not None:
size[dim] = dim_size
elif index.numel() == 0:
size[dim] = 0
else:
size[dim] = int(index.max()) + 1
out = torch.zeros(size, dtype=src.dtype, device=src.device)
return out.scatter_add_(dim, index, src)
else:
return out.scatter_add_(dim, index, src)
@compile_mode("script")
class MACE(torch.nn.Module):
def __init__(
self,
r_max: float=5.0,
num_bessel: int=8, #8
num_polynomial_cutoff: int=5, #5
max_ell: int=3,
interaction_cls: Type[InteractionBlock] = RealAgnosticResidualInteractionBlock,
interaction_cls_first: Type[InteractionBlock] = RealAgnosticInteractionBlock,
num_interactions: int=2,
num_elements: int = 100,
hidden_irreps = o3.Irreps("128x0e + 128x1o"),
MLP_irreps = o3.Irreps("16x0e"),
avg_num_neighbors: float=35,
correlation: Union[int, List[int]] = 3,
radial_MLP: Optional[List[int]] = None,
radial_type: Optional[str] = "bessel",
):
super().__init__()
self.num_elements = num_elements
self.register_buffer(
"r_max", torch.tensor(r_max, dtype=torch.get_default_dtype())
)
self.register_buffer(
"num_interactions", torch.tensor(num_interactions, dtype=torch.int64)
)
if isinstance(correlation, int):
correlation = [correlation] * num_interactions
# Embedding
node_attr_irreps = o3.Irreps([(num_elements, (0, 1))])
node_feats_irreps = o3.Irreps([(hidden_irreps.count(o3.Irrep(0, 1)), (0, 1))])
self.node_embedding = LinearNodeEmbeddingBlock(
irreps_in=node_attr_irreps, irreps_out=node_feats_irreps
)
self.radial_embedding = RadialEmbeddingBlock(
r_max=r_max,
num_bessel=num_bessel,
num_polynomial_cutoff=num_polynomial_cutoff,
radial_type=radial_type,
)
edge_feats_irreps = o3.Irreps(f"{self.radial_embedding.out_dim}x0e")
sh_irreps = o3.Irreps.spherical_harmonics(max_ell)
num_features = hidden_irreps.count(o3.Irrep(0, 1))
interaction_irreps = (sh_irreps * num_features).sort()[0].simplify()
self.spherical_harmonics = o3.SphericalHarmonics(
sh_irreps, normalize=True, normalization="component"
)
if radial_MLP is None:
radial_MLP = [64, 64, 64]
inter = interaction_cls_first(
node_attrs_irreps=node_attr_irreps,
node_feats_irreps=node_feats_irreps,
edge_attrs_irreps=sh_irreps,
edge_feats_irreps=edge_feats_irreps,
target_irreps=interaction_irreps,
hidden_irreps=hidden_irreps,
avg_num_neighbors=avg_num_neighbors,
radial_MLP=radial_MLP,
)
self.interactions = torch.nn.ModuleList([inter])
# Use the appropriate self connection at the first layer for proper E0
use_sc_first = False
if "Residual" in str(interaction_cls_first):
use_sc_first = True
node_feats_irreps_out = inter.target_irreps
prod = EquivariantProductBasisBlock(
node_feats_irreps=node_feats_irreps_out,
target_irreps=hidden_irreps,
correlation=correlation[0],
num_elements=num_elements,
use_sc=use_sc_first,
)
self.products = torch.nn.ModuleList([prod])
for i in range(num_interactions - 1):
if i == num_interactions - 2:
hidden_irreps_out = str(
hidden_irreps[0]
) # Select only scalars for last layer
else:
hidden_irreps_out = hidden_irreps
inter = interaction_cls(
node_attrs_irreps=node_attr_irreps,
node_feats_irreps=hidden_irreps,
edge_attrs_irreps=sh_irreps,
edge_feats_irreps=edge_feats_irreps,
target_irreps=interaction_irreps,
hidden_irreps=hidden_irreps_out,
avg_num_neighbors=avg_num_neighbors,
radial_MLP=radial_MLP,
)
self.interactions.append(inter)
prod = EquivariantProductBasisBlock(
node_feats_irreps=interaction_irreps,
target_irreps=hidden_irreps_out,
correlation=correlation[i + 1],
num_elements=num_elements,
use_sc=True,
)
self.products.append(prod)
self.readout = o3.Linear(hidden_irreps_out, "9x0e")
def forward(
self,
data,
) -> Dict[str, Optional[torch.Tensor]]:
# Embeddings
node_attrs = F.one_hot(data.atomic_numbers.long().squeeze(-1), num_classes=self.num_elements).float()
node_feats = self.node_embedding(node_attrs)
edge_attrs = self.spherical_harmonics(data.edge_attr)
lengths = torch.norm(data.edge_attr, dim=1).unsqueeze(-1)
edge_feats = self.radial_embedding(lengths)
# Interactions
for interaction, product in zip(
self.interactions, self.products
):
node_feats, sc = interaction(
node_attrs=node_attrs,
node_feats=node_feats,
edge_attrs=edge_attrs,
edge_feats=edge_feats,
edge_index=data.edge_index,
)
node_feats = product(
node_feats=node_feats,
sc=sc,
node_attrs=node_attrs,
)
output_node = self.readout(node_feats)
crystal_features = scatter(output_node, data.batch, dim=0, reduce="mean")
return crystal_features