-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconst.yaml
41 lines (41 loc) · 1.09 KB
/
const.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# After 2 epochs, model should hit 85.76/88.87 F1/EM
name: ALBert_SQuAD_PyTorch_1gpu
hyperparameters:
global_batch_size: 2
learning_rate: 5.0e-5
model_type: 'albert'
adam_epsilon: 1.0e-8
weight_decay: 0
num_warmup_steps: 13220 # 10% of total training
max_seq_length: 384
doc_stride: 128
max_query_length: 64
n_best_size: 20
max_answer_length: 30
null_score_diff_threshold: 0.0
max_grad_norm: 1.0
num_training_steps: 132198 # This is the number of optimizer steps. Train for 2 epochs
do_lower_case: true
use_radam: false
resources:
slots_per_trial: 1
searcher:
name: single
metric: f1
max_length:
records: 264396
smaller_is_better: false
min_validation_period:
records: 80000
data:
pretrained_model_name: "albert-xxlarge-v2"
use_bind_mount: True
bind_mount_path: /mnt/data
task: "SQuAD2.0" # SQuaD 2.0 has 132198 example.
entrypoint: model_def:AlbertSQuADPyTorch
optimizations:
aggregation_frequency: 24
bind_mounts:
- host_path: /tmp/
container_path: /mnt/data
read_only: false