-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
184 lines (152 loc) · 5.29 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
"""
Minimal transformer model code adapted from gpt-fast: https://github.com/pytorch-labs/gpt-fast
"""
class FeedForward(nn.Module):
def __init__(
self,
d_model: int,
device: Optional[torch.device] = None,
) -> None:
super().__init__()
self.w0 = nn.Linear(d_model, 4 * d_model, device=device)
self.relu = nn.ReLU()
self.w1 = nn.Linear(4 * d_model, d_model, device=device)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.w1(self.relu(self.w0(x)))
class Attention(nn.Module):
def __init__(
self,
d_model: int,
n_heads: int,
device: Optional[torch.device] = None,
):
super().__init__()
assert d_model % n_heads == 0, "n_heads must divide d_model evenly"
self.wqkv = nn.Linear(d_model, 3 * d_model, bias=False, device=device)
self.wo = nn.Linear(d_model, d_model, bias=False, device=device)
self.d_model = d_model
self.n_heads = n_heads
self.head_dim = d_model // n_heads
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
bsz, seqlen, _ = inputs.shape
# Get queries, keys, and values
q, k, v = self.wqkv(inputs).split(
[self.d_model, self.d_model, self.d_model], dim=-1
)
q = q.view(bsz, seqlen, self.n_heads, self.head_dim)
k = k.view(bsz, seqlen, self.n_heads, self.head_dim)
v = v.view(bsz, seqlen, self.n_heads, self.head_dim)
q, k, v = map(lambda inputs: inputs.transpose(1, 2), (q, k, v))
# Compute attention
y = F.scaled_dot_product_attention(q, k, v, is_causal=True, dropout_p=0.0)
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.d_model)
y = self.wo(y)
return y
class TransformerBlock(nn.Module):
"""
The transformer blocks.
Forward pass schematic:
┌──────┐
│inputs│
└┬─┬───┘
│┌▽─────────┐
││norm, attn│
│└┬─────────┘
┌▽─▽──┐
│add │
└┬─┬──┘
│┌▽────────┐
││norm, ffn│
│└┬────────┘
┌▽─▽──┐
│add │
└┬────┘
┌▽──────┐
│outputs│
└───────┘
"""
def __init__(
self,
d_model: int,
n_heads: int,
device: Optional[torch.device] = None,
) -> None:
super().__init__()
self.attention = Attention(d_model=d_model, n_heads=n_heads, device=device)
self.feed_forward = FeedForward(d_model=d_model, device=device)
self.ffn_norm = nn.LayerNorm(d_model, device=device)
self.attention_norm = nn.LayerNorm(d_model, device=device)
def forward(
self,
inputs: torch.Tensor,
) -> torch.Tensor:
h = inputs + self.attention(self.attention_norm(inputs))
out = h + self.feed_forward(self.ffn_norm(h))
return out
class EmbedAndEncode(nn.Module):
"""
Embedding layer with learned positional encodings.
"""
def __init__(
self,
d_model: int,
vocab_size: int,
max_seq_len: int,
device: Optional[torch.device] = None,
) -> None:
super().__init__()
# Learned positional encoding and embedding layer:
self.max_seq_len = max_seq_len
self.learned_pos_enc = nn.Parameter(
torch.zeros(max_seq_len, d_model, device=device)
)
self.tok_embeddings = nn.Embedding(vocab_size, d_model, device=device)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
_, seq_len = inputs.shape
assert seq_len <= self.max_seq_len
outputs = self.tok_embeddings(inputs) + self.learned_pos_enc[None, :seq_len]
return outputs
class LMHead(nn.Module):
def __init__(
self,
d_model: int,
vocab_size: int,
device: Optional[torch.device] = None,
) -> None:
super().__init__()
self.norm = nn.LayerNorm(d_model, device=device)
self.output = nn.Linear(d_model, vocab_size, bias=False, device=device)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
logits = self.output(self.norm(inputs))
return logits
class Transformer(nn.Module):
def __init__(
self,
d_model: int,
n_heads: int,
vocab_size: int,
n_layers: int,
max_seq_len: int,
device: Optional[torch.device] = None,
) -> None:
super().__init__()
# Embed/encode
self.embed_and_encode = EmbedAndEncode(
d_model, vocab_size, max_seq_len, device=device
)
# Transformer blocks
self.layers = nn.ModuleList(
TransformerBlock(d_model, n_heads, device=device) for _ in range(n_layers)
)
# Final norm and language model head:
self.lm_head = LMHead(d_model, vocab_size, device=device)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
x = self.embed_and_encode(inputs)
for layer in self.layers:
x = layer(x)
logits = self.lm_head(x)
return logits