-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdpo_finetune.py
216 lines (179 loc) · 7.22 KB
/
dpo_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import logging
import sys
from typing import Any, Dict, List
import datasets
import determined as det
import transformers
from datasets import Dataset, DatasetDict, concatenate_datasets, load_dataset
from determined.transformers import DetCallback
from transformers import PreTrainedTokenizer, TrainingArguments, set_seed
from trl import DPOTrainer
from utils import download_ckpt, get_model, get_tokenizer
logger = logging.getLogger(__name__)
TRIPLET_DATASET = "prompt,chosen,rejected"
CONVERSATION_DATASET = "chosen,rejected"
def is_feature_chat_conversation_format(dataset: Dataset, feature: str) -> bool:
example = dataset[0][feature]
if isinstance(example, list) and all(isinstance(x, dict) for x in example):
for sample in example:
if "content" not in sample or "role" not in sample:
raise RuntimeError(
f"Column {feature} has data in unsupported format : {sample}"
)
return True
else:
raise RuntimeError(
f"Column {feature} has data in unsupported format : {example}"
)
def get_dataset_format(dataset: Dataset) -> str:
if "chosen" not in dataset.features or "rejected" not in dataset.features:
raise RuntimeError(
f"DPO-compatible dataset requires 'chosen' and 'rejected' features."
)
if all(feature in dataset.features for feature in ["prompt", "chosen", "rejected"]):
return TRIPLET_DATASET
if is_feature_chat_conversation_format(
dataset, "chosen"
) and is_feature_chat_conversation_format(dataset, "rejected"):
return CONVERSATION_DATASET
def process_conversation_dataset(dataset: Dataset, tokenizer) -> Dataset:
processed_data = {"prompt": [], "chosen": [], "rejected": []}
for example in dataset:
assert ". ".join([x["content"] for x in example["chosen"][:-1]]) == ". ".join(
[x["content"] for x in example["rejected"][:-1]]
)
assert all(x["role"] != "system" for x in example["chosen"])
prompt_messages = example["chosen"][:-1]
chosen_messages = example["chosen"][-1:]
rejected_messages = example["rejected"][-1:]
processed_data["prompt"].append(
tokenizer.apply_chat_template(prompt_messages, tokenize=False)
)
processed_data["chosen"].append(
tokenizer.apply_chat_template(chosen_messages, tokenize=False)
)
processed_data["rejected"].append(
tokenizer.apply_chat_template(rejected_messages, tokenize=False)
)
dataset = Dataset.from_dict(processed_data)
return dataset
def process_triplet_dataset(
dataset: Dataset, tokenizer: PreTrainedTokenizer
) -> Dataset:
def apply_chat_template(example):
if "system" in example:
prompt = example["system"] + "\n"
else:
prompt = ""
example["prompt"] = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt + example["prompt"]}],
tokenize=False,
)
example["chosen"] = tokenizer.apply_chat_template(
[{"role": "assistant", "content": example["chosen"]}], tokenize=False
)
example["rejected"] = tokenizer.apply_chat_template(
[{"role": "assistant", "content": example["rejected"]}], tokenize=False
)
return example
columns = set(dataset.features) - {"prompt", "rejected", "chosen"}
dataset = dataset.map(apply_chat_template, remove_columns=list(columns))
return dataset
def load_dpo_datasets(
datasets: List[str], tokenizer: PreTrainedTokenizer
) -> DatasetDict:
dataset_list_validated = []
for dataset_name in datasets:
dataset = load_dataset(dataset_name)
if isinstance(dataset, DatasetDict):
dataset_list = [dataset[k] for k in dataset]
else:
dataset_list = [dataset]
for ds in dataset_list:
dataset_format = get_dataset_format(ds)
if dataset_format == CONVERSATION_DATASET:
ds = process_conversation_dataset(ds, tokenizer)
elif dataset_format == TRIPLET_DATASET:
ds = process_triplet_dataset(ds, tokenizer)
dataset_list_validated.append(ds)
dataset = concatenate_datasets(dataset_list_validated)
dataset = dataset.train_test_split(test_size=0.2, shuffle=False)
return dataset
def main(
core_context: det.core.Context,
training_args: TrainingArguments,
det_callback: DetCallback,
hparams: Dict[str, Any],
) -> None:
logger.info(f"Training/evaluation parameters {training_args}")
set_seed(training_args.seed)
model_ckpt = hparams.get("model_ckpt", None)
if model_ckpt:
model_name_or_path = download_ckpt(model_ckpt, core_context)
else:
model_name_or_path = hparams["model_name"]
model = get_model(model_name_or_path)
if not hparams["precompute_ref_log_probs"]:
model_ref = get_model(model_name_or_path)
model_ref.eval()
else:
model_ref = None
tokenizer = get_tokenizer(
model_name_or_path,
truncation_side="left",
padding_side="left",
model_max_length=hparams["max_length"],
add_eos_token=False,
)
dataset = load_dpo_datasets(hparams["datasets"], tokenizer)
if core_context.distributed.rank == 0:
for index in [0, 1, 2]:
logger.info(
f"Prompt sample {index} of the raw training set:\n\n{dataset['train'][index]['prompt']}"
)
logger.info(
f"Chosen sample {index} of the raw training set:\n\n{dataset['train'][index]['chosen']}"
)
logger.info(
f"Rejected sample {index} of the raw training set:\n\n{dataset['train'][index]['rejected']}"
)
trainer = DPOTrainer(
model,
model_ref,
args=training_args,
beta=hparams["dpo_beta"],
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
loss_type=hparams["dpo_loss"],
tokenizer=tokenizer,
precompute_ref_log_probs=hparams["precompute_ref_log_probs"],
max_length=hparams["max_length"],
max_prompt_length=hparams["max_prompt_length"],
max_target_length=hparams["max_target_length"],
)
trainer.add_callback(det_callback)
trainer.train()
if __name__ == "__main__":
# Setup logging
logging.basicConfig(
format=det.LOG_FORMAT,
handlers=[logging.StreamHandler(sys.stdout)],
level=logging.INFO,
)
log_level = logging.INFO
transformers.utils.logging.set_verbosity_info()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
info = det.get_cluster_info()
hparams = info.trial.hparams
training_args = TrainingArguments(**hparams["training_args"])
distributed = det.core.DistributedContext.from_deepspeed()
with det.core.init(distributed=distributed) as core_context:
det_callback = DetCallback(
core_context,
training_args,
)
main(core_context, training_args, det_callback, hparams)