-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathoptim_placebo_psilo.m
182 lines (139 loc) · 4.64 KB
/
optim_placebo_psilo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
clc; clear all;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Dynamic coupling of Whole-Brain Neuronal and Neurotransmitter Systems
% Kringelbach, M. L., Cruzat, J., Cabral, J., Knudsen, G. M.,
% Carhart-Harris, R. L., Whybrow, P. C., Logothetis N. K. & Deco, G.
% (2020) Proceedings of the National Academy of Sciences
% Barcelona?Spain, March, 2020.
%%%%%%
load empiricalLEiDA_Psilo3_0407.mat;
P1emp=mean(P1emp);
LT1emp=mean(LT1emp);
P2emp=mean(P2emp);
LT2emp=mean(LT2emp);
load all_SC_FC_TC_76_90_116.mat;
load mean5HT2A_bindingaal.mat
C=sc90;
C=C/max(max(C))*0.2;
N=90;
Receptor=mean5HT2A_aalsymm(:,1)/max(mean5HT2A_aalsymm(:,1));
load psilotc.mat;
NSUB=9;
Isubdiag = find(tril(ones(N),-1));
%%Here is my example of my data (are fdifferent cases...
CASE=3; %% 3 placebo ; 4 Psilo
TC1=LR_version_symm(tc_aal{1,CASE});
TC2=LR_version_symm(tc_aal{2,CASE});
TC3=LR_version_symm(tc_aal{3,CASE});
TC4=LR_version_symm(tc_aal{4,CASE});
TC5=LR_version_symm(tc_aal{5,CASE});
TC6=LR_version_symm(tc_aal{6,CASE});
TC7=LR_version_symm(tc_aal{7,CASE});
TC8=LR_version_symm(tc_aal{8,CASE});
TC9=LR_version_symm(tc_aal{9,CASE});
xs=eval(sprintf('TC%d',1));
Tmax=size(xs,2);
TR=3.; % Repetition Time (seconds)
NumClusters=Number_Clusters;
delt = TR; % sampling interval
k=2; % 2nd order butterworth filter
fnq=1/(2*delt);
flp = 0.04; % lowpass frequency of filter
fhi = 0.07; % highpass
Wn=[flp/fnq fhi/fnq]; % butterworth bandpass non-dimensional frequency
[bfilt2,afilt2]=butter(k,Wn); % construct the filter
%%%%%%%%%%%%%%
for nsub=1:NSUB
signaldata=eval(sprintf('TC%d', nsub));
FCemp2(nsub,:,:)=corrcoef(signaldata');
Phase_BOLD_data=zeros(N,Tmax);
for seed=1:N
signaldata(seed,:)=signaldata(seed,:)-mean(signaldata(seed,:));
signal_filt_data =filtfilt(bfilt2,afilt2,signaldata(seed,:));
Phase_BOLD_data(seed,:) = angle(hilbert(signal_filt_data));
end
for t=1:Tmax
for n=1:N
for p=1:N
iFC(t,n,p)=cos(Phase_BOLD_data(n,t)-Phase_BOLD_data(p,t));
end
end
end
FCphasesemp2(nsub,:,:)=squeeze(mean(iFC));
end
FCphasesemp=squeeze(mean(FCphasesemp2));
FCemp=squeeze(mean(FCemp2));
%%%%%%%%%%%%%%%%%%
dtt = 1e-3; % Sampling rate of simulated neuronal activity (seconds)
dt=0.1;
taon=100;
taog=10;
gamma=0.641;
sigma=0.01;
JN=0.15;
I0=0.382;
Jexte=1.;
Jexti=0.7;
w=1.4;
Tmax=2000;
boldstep=TR*1000;
%%%%%%%%%%%%
%% Optimize
%%
iwe=1;
WE=0.5:0.01:2;
for s = 1:(size(WE,2))
we=WE(s);
Cnew=C;
J=Balance_J(we,Cnew);
for iter=1:10
neuro_act=zeros(round(1000*(Tmax-1)*TR+1),N);
sn=0.001*ones(N,1);
sg=0.001*ones(N,1);
nn=1;
for t=0:dt:(1000*(Tmax-1)*TR)
xn=I0*Jexte+w*JN*sn+we*JN*Cnew*sn-J.*sg;
xg=I0*Jexti+JN*sn-sg;
rn=phie(xn);
rg=phii(xg);
sn=sn+dt*(-sn/taon+(1-sn)*gamma.*rn./1000.)+sqrt(dt)*sigma*randn(N,1);
sn(sn>1) = 1;
sn(sn<0) = 0;
sg=sg+dt*(-sg/taog+rg./1000.)+sqrt(dt)*sigma*randn(N,1);
sg(sg>1) = 1;
sg(sg<0) = 0;
j=j+1;
if abs(mod(t,1))<0.01
neuro_act(nn,:)=rn';
nn=nn+1;
end
end
nn=nn-1;
%%%% BOLD empirical
% Friston BALLOON MODEL
T = nn*dtt; % Total time in seconds
B = BOLD(T,neuro_act(1:nn,1)'); % B=BOLD activity, bf=Foutrier transform, f=frequency range)
BOLD_act = zeros(length(B),N);
BOLD_act(:,1) = B;
for nnew=2:N
B = BOLD(T,neuro_act(1:nn,nnew));
BOLD_act(:,nnew) = B;
end
bds=BOLD_act(boldstep:boldstep:end,:);
%%%
FC_simul=corrcoef(bds);
cc=corrcoef(atanh(FCemp(Isubdiag)),atanh(FC_simul(Isubdiag)));
fitt2(iwe)=cc(2);
%%%% KL dist between PTR2emp
[PTRsim,Pstates,LTime]=LEiDA_fix_cluster2(bds',NumClusters,Vemp,TR);
errorlifetimeplacebo2(iwe)=sqrt(sum((LT1emp-LTime).^2)/length(LTime))
klpstatesplacebo2(iwe)=0.5*(sum(Pstates.*log(Pstates./P1emp))+sum(P1emp.*log(P1emp./Pstates)))
entropydistplacebo2(iwe)=EntropyMarkov2(PTR1emp,PTRsim,P1emp,Pstates)
iwe=iwe+1;
end
fitt=mean(fitt2);
errorlifetimeplacebo=mean(errorlifetimeplacebo2);
klpstatesplacebo=mean(klpstatesplacebo2);
entropydistplacebo=mean(entropydistplacebo2);
save(sprintf('Gp_%03d.mat',s),'fitt','errorlifetimeplacebo','klpstatesplacebo','entropydistplacebo','Cnew');
end