-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgraph.py
286 lines (236 loc) · 7.67 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import numpy as np
import networkx as nx
import random
import math
import scipy.io as sio
import scipy
'''
DISCLAIMER:
adapted from the source code of node2vec
https://github.com/aditya-grover/node2vec
'''
class Graph():
def __init__(self, file, directed, weighted, p, q, flag=True):
self.directed = directed
self.weighted = weighted
self.p = p
self.q = q
self.adj = sio.loadmat(file)['network']
self.G = self._load_graph()
self.node_num = self.adj.shape[0]
if flag:
labels = sio.loadmat(file)['group']
if isinstance(labels, scipy.sparse.csc.csc_matrix):
self.labels = np.array(labels.toarray(), dtype=np.int32)
else:
self.labels = np.array(labels, dtype=np.int32)
else:
self.labels = None
degrees = list(np.reshape(np.array(np.sum(self.adj, 1)), (self.adj.shape[0],)))
self.table = UnigramTable(degrees)
self.preprocess_transition_probs()
def _load_graph(self):
'''
sparse adj to networkx graph
'''
if self.weighted:
# node id starts from 0
G = nx.from_scipy_sparse_matrix(self.adj, create_using=nx.DiGraph())
else:
G = nx.from_scipy_sparse_matrix(self.adj, create_using=nx.DiGraph())
for edge in G.edges():
G[edge[0]][edge[1]]['weight'] = 1
if not self.directed:
G = G.to_undirected()
return G
def node2vec_walk(self, walk_length, start_node):
'''
Simulate a random walk starting from start node.
'''
G = self.G
alias_nodes = self.alias_nodes
alias_edges = self.alias_edges
walk = [start_node]
while len(walk) < walk_length:
cur = walk[-1]
cur_nbrs = sorted(G.neighbors(cur))
if len(cur_nbrs) > 0:
if len(walk) == 1:
walk.append(cur_nbrs[alias_draw(alias_nodes[cur][0], alias_nodes[cur][1])])
else:
prev = walk[-2]
next = cur_nbrs[alias_draw(alias_edges[(prev, cur)][0],
alias_edges[(prev, cur)][1])]
walk.append(next)
else:
break
return walk
def simulate_walks(self, num_walks, walk_length):
'''
Repeatedly simulate random walks from each node.
'''
G = self.G
walks = []
nodes = list(G.nodes())
print('Walk iteration:')
for walk_iter in range(num_walks):
print(str(walk_iter+1)+'/'+str(num_walks))
random.shuffle(nodes)
for node in nodes:
walks.append(self.node2vec_walk(walk_length=walk_length, start_node=node))
return np.array(walks)
def get_alias_edge(self, src, dst):
'''
Get the alias edge setup lists for a given edge.
'''
G = self.G
p = self.p
q = self.q
unnormalized_probs = []
for dst_nbr in sorted(G.neighbors(dst)):
if dst_nbr == src:
unnormalized_probs.append(G[dst][dst_nbr]['weight']/p)
elif G.has_edge(dst_nbr, src):
unnormalized_probs.append(G[dst][dst_nbr]['weight'])
else:
unnormalized_probs.append(G[dst][dst_nbr]['weight']/q)
norm_const = sum(unnormalized_probs)
normalized_probs = [float(u_prob)/norm_const for u_prob in unnormalized_probs]
return alias_setup(normalized_probs)
def preprocess_transition_probs(self):
'''
Preprocessing of transition probabilities for guiding the random walks.
'''
G = self.G
is_directed = self.directed
alias_nodes = {}
for node in G.nodes():
unnormalized_probs = [G[node][nbr]['weight'] for nbr in sorted(G.neighbors(node))]
norm_const = sum(unnormalized_probs)
normalized_probs = [float(u_prob)/norm_const for u_prob in unnormalized_probs]
alias_nodes[node] = alias_setup(normalized_probs)
alias_edges = {}
triads = {}
if is_directed:
for edge in G.edges():
alias_edges[edge] = self.get_alias_edge(edge[0], edge[1])
else:
for edge in G.edges():
alias_edges[edge] = self.get_alias_edge(edge[0], edge[1])
alias_edges[(edge[1], edge[0])] = self.get_alias_edge(edge[1], edge[0])
self.alias_nodes = alias_nodes
self.alias_edges = alias_edges
return
class Graph_LINE():
def __init__(self, file, directed, weighted, base='LINE_2', batch_size=1024, K=1, order=1):
self.directed = directed
self.weighted = weighted
self.base = base
self.batch_size = batch_size
self.K = K # negative sampling
self.order = order
self.adj = sio.loadmat(file)['network']
self.node_num = self.adj.shape[0]
degrees = list(np.reshape(np.array(np.sum(self.adj, 1)), (self.adj.shape[0],)))
self.table = UnigramTable(degrees)
if self.base=='LINE_1':
self.edge_list = self._adj_to_edgelist(self.adj, order=self.order)
self.edge_num = self.edge_list.shape[0]
self.edge_batch = self._batch_generator()
elif self.base=='LINE_2':
self.edge_list = self._adj_to_edgelist(self.adj, order=self.order)
self.edge_num = self.edge_list.shape[0]
self.edge_batch = self._batch_generator()
def _batch_generator(self):
edge_weights = list(self.edge_list[:, 2])
edge_table = UnigramTable(edge_weights, power=1)
while True:
indices = edge_table.sample(self.batch_size)
pos_pairs = self.edge_list[np.array(indices, np.int32), 0:2]
neg_pairs = []
for i in range(self.batch_size):
for j in range(self.K):
n_neg = self.table.sample(1)[0]
while n_neg==pos_pairs[i, 0] or n_neg==pos_pairs[i, 1]:
n_neg = self.table.sample(1)[0]
neg_pairs.append([pos_pairs[i, 0], n_neg])
neg_pairs = np.array(neg_pairs, np.int32)
yield pos_pairs, neg_pairs
def _adj_to_edgelist(self, network, order=1):
def adj_to_symmetry(network):
N = network.shape[0]
rows, cols = np.nonzero(network)
for i in range(rows.shape[0]):
network[cols[i], rows[i]] = network[rows[i], cols[i]]
return network
if not self.directed:
network = adj_to_symmetry(network)
if order>1:
tmp = network
for i in range(order):
network = tmp * network
N = network.shape[0]
rows, cols = np.nonzero(network)
edgelist = []
for i in range(rows.shape[0]):
edgelist.append([rows[i], cols[i], network[rows[i], cols[i]]])
return np.array(edgelist, dtype=np.int32)
class UnigramTable:
"""
Using weight list to initialize the drawing
"""
def __init__(self, vocab, power=0.75):
vocab_size = len(vocab)
norm = sum([math.pow(t, power) for t in vocab]) # Normalizing constant
table_size = int(1e8) # Length of the unigram table
table = np.zeros(table_size, dtype=np.uint32)
print('Filling unigram table')
p = 0 # Cumulative probability
i = 0
for t in range(vocab_size):
p += float(math.pow(vocab[t], power))/norm
while i < table_size and float(i) / table_size < p:
table[i] = t
i += 1
self.table = table
print('Finish filling unigram table')
def sample(self, count):
indices = np.random.randint(low=0, high=len(self.table), size=count)
return [self.table[i] for i in indices]
def alias_setup(probs):
'''
Compute utility lists for non-uniform sampling from discrete distributions.
Refer to https://hips.seas.harvard.edu/blog/2013/03/03/the-alias-method-efficient-sampling-with-many-discrete-outcomes/
for details
'''
K = len(probs)
q = np.zeros(K)
J = np.zeros(K, dtype=np.int)
smaller = []
larger = []
for kk, prob in enumerate(probs):
q[kk] = K*prob
if q[kk] < 1.0:
smaller.append(kk)
else:
larger.append(kk)
while len(smaller) > 0 and len(larger) > 0:
small = smaller.pop()
large = larger.pop()
J[small] = large
q[large] = q[large] + q[small] - 1.0
if q[large] < 1.0:
smaller.append(large)
else:
larger.append(large)
return J, q
def alias_draw(J, q):
'''
Draw sample from a non-uniform discrete distribution using alias sampling.
'''
K = len(J)
kk = int(np.floor(np.random.rand()*K))
if np.random.rand() < q[kk]:
return kk
else:
return J[kk]