Skip to content

Commit f85ca53

Browse files
authored
Update README paths
1 parent 3b340f0 commit f85ca53

File tree

1 file changed

+8
-8
lines changed

1 file changed

+8
-8
lines changed

README.md

+8-8
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@ All training parameters are located in configuration files in the folder `config
3939

4040
The following command will create the synthetic dataset and start training the model on it:
4141
```bash
42-
python -m sold2.experiment --mode train --dataset_config config/synthetic_dataset.yaml --model_config config/train_detector.yaml --exp_name sold2_synth
42+
python -m sold2.experiment --mode train --dataset_config sold2/config/synthetic_dataset.yaml --model_config sold2/config/train_detector.yaml --exp_name sold2_synth
4343
```
4444
</details>
4545

@@ -48,20 +48,20 @@ python -m sold2.experiment --mode train --dataset_config config/synthetic_datase
4848

4949
Note that this step can take one to several days depending on your machine and on the size of the dataset. You can set the batch size to the maximum capacity that your GPU can handle. Prior to this step, make sure that the dataset config file `config/wireframe_dataset.yaml` has the lines `gt_source_train` and `gt_source_test` commented and you should also disable the photometric and homographic augmentations.
5050
```bash
51-
python -m sold2.experiment --exp_name wireframe_train --mode export --resume_path <path to your previously trained sold2_synth> --model_config config/train_detector.yaml --dataset_config config/wireframe_dataset.yaml --checkpoint_name <name of the best checkpoint> --export_dataset_mode train --export_batch_size 4
51+
python -m sold2.experiment --exp_name wireframe_train --mode export --resume_path <path to your previously trained sold2_synth> --model_config sold2/config/train_detector.yaml --dataset_config sold2/config/wireframe_dataset.yaml --checkpoint_name <name of the best checkpoint> --export_dataset_mode train --export_batch_size 4
5252
```
5353

5454
You can similarly perform the same for the test set:
5555
```bash
56-
python -m sold2.experiment --exp_name wireframe_test --mode export --resume_path <path to your previously trained sold2_synth> --model_config config/train_detector.yaml --dataset_config config/wireframe_dataset.yaml --checkpoint_name <name of the best checkpoint> --export_dataset_mode test --export_batch_size 4
56+
python -m sold2.experiment --exp_name wireframe_test --mode export --resume_path <path to your previously trained sold2_synth> --model_config sold2/config/train_detector.yaml --dataset_config sold2/config/wireframe_dataset.yaml --checkpoint_name <name of the best checkpoint> --export_dataset_mode test --export_batch_size 4
5757
```
5858
</details>
5959

6060
<details>
6161
<summary><b>Step3: Compute the ground truth line segments from the raw data</b></summary>
6262

6363
```bash
64-
python -m sold2.postprocess.convert_homography_results <name of the previously exported file (e.g. "wireframe_train.h5")> <name of the new data with extracted line segments (e.g. "wireframe_train_gt.h5")> config/export_line_features.yaml
64+
python -m sold2.postprocess.convert_homography_results <name of the previously exported file (e.g. "wireframe_train.h5")> <name of the new data with extracted line segments (e.g. "wireframe_train_gt.h5")> sold2/config/export_line_features.yaml
6565
```
6666

6767
We recommend testing the results on a few samples of your dataset to check the quality of the output, and modifying the hyperparameters if need be. Using a `detect_thresh=0.5` and `inlier_thresh=0.99` proved to be successful for the Wireframe dataset in our case for example.
@@ -73,17 +73,17 @@ We recommend testing the results on a few samples of your dataset to check the q
7373
We found it easier to pretrain the detector alone first, before fine-tuning it with the descriptor part.
7474
Uncomment the lines 'gt_source_train' and 'gt_source_test' in `config/wireframe_dataset.yaml` and fill them with the path to the h5 file generated in the previous step.
7575
```bash
76-
python -m sold2.experiment --mode train --dataset_config config/wireframe_dataset.yaml --model_config config/train_detector.yaml --exp_name sold2_wireframe
76+
python -m sold2.experiment --mode train --dataset_config sold2/config/wireframe_dataset.yaml --model_config sold2/config/train_detector.yaml --exp_name sold2_wireframe
7777
```
7878

7979
Alternatively, you can also fine-tune the already trained synthetic model:
8080
```bash
81-
python -m sold2.experiment --mode train --dataset_config config/wireframe_dataset.yaml --model_config config/train_detector.yaml --exp_name sold2_wireframe --pretrained --pretrained_path <path ot the pre-trained sold2_synth> --checkpoint_name <name of the best checkpoint>
81+
python -m sold2.experiment --mode train --dataset_config sold2/config/wireframe_dataset.yaml --model_config sold2/config/train_detector.yaml --exp_name sold2_wireframe --pretrained --pretrained_path <path ot the pre-trained sold2_synth> --checkpoint_name <name of the best checkpoint>
8282
```
8383

8484
Lastly, you can resume a training that was stopped:
8585
```bash
86-
python -m sold2.experiment --mode train --dataset_config config/wireframe_dataset.yaml --model_config config/train_detector.yaml --exp_name sold2_wireframe --resume --resume_path <path to the model to resume> --checkpoint_name <name of the last checkpoint>
86+
python -m sold2.experiment --mode train --dataset_config sold2/config/wireframe_dataset.yaml --model_config sold2/config/train_detector.yaml --exp_name sold2_wireframe --resume --resume_path <path to the model to resume> --checkpoint_name <name of the last checkpoint>
8787
```
8888
</details>
8989

@@ -92,7 +92,7 @@ python -m sold2.experiment --mode train --dataset_config config/wireframe_datase
9292

9393
You first need to modify the field 'return_type' in `config/wireframe_dataset.yaml` to 'paired_desc'. The following command will then train the full model (detector + descriptor) on the Wireframe dataset:
9494
```bash
95-
python -m sold2.experiment --mode train --dataset_config config/wireframe_dataset.yaml --model_config config/train_full_pipeline.yaml --exp_name sold2_full_wireframe --pretrained --pretrained_path <path ot the pre-trained sold2_wireframe> --checkpoint_name <name of the best checkpoint>
95+
python -m sold2.experiment --mode train --dataset_config sold2/config/wireframe_dataset.yaml --model_config sold2/config/train_full_pipeline.yaml --exp_name sold2_full_wireframe --pretrained --pretrained_path <path ot the pre-trained sold2_wireframe> --checkpoint_name <name of the best checkpoint>
9696
```
9797
</details>
9898

0 commit comments

Comments
 (0)