-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_cnn.py
47 lines (39 loc) · 1.36 KB
/
my_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# -*- coding: utf-8 -*-
"""
Created on Sat Dec 15 15:17:33 2018
@author: crist
"""
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
classifier = Sequential()
classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2,2)))
classifier.add(Conv2D(32, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2,2)))
classifier.add(Flatten())
classifier.add(Dense(units = 128, activation='relu'))
classifier.add(Dense(units = 1, activation='sigmoid'))
classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. /255)
training_set = train_datagen.flow_from_directory(
'./dataset/training_set',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
test_set = test_datagen.flow_from_directory(
'./dataset/test_set',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
classifier.fit_generator(
training_set,
steps_per_epoch=8000,
epochs=25,
validation_data=test_set,
validation_steps=2000)