-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_gwgan_mlp.py
321 lines (272 loc) · 9.31 KB
/
main_gwgan_mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#!/usr/bin/python
# author: Charlotte Bunne
# imports
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import torch
import os
import pandas as pd
import seaborn as sns
from pylab import array
# internal imports
from model.utils import *
from model.data import *
from model.model_mlp import Generator, Adversary
from model.model_mlp import weights_init_adversary, weights_init_generator
from model.loss import gwnorm_distance
from model.loss import loss_procrustes
# get arguments
FUNCTION_MAP = {'4mode': gaussians_4mode,
'5mode': gaussians_5mode,
'8mode': gaussians_8mode,
'3d_4mode': gaussians_3d_4mode
}
args = get_args()
# plotting preferences
matplotlib.rcParams['font.sans-serif'] = 'Times New Roman'
matplotlib.rcParams['font.family'] = 'sans-serif'
matplotlib.rcParams['font.size'] = 10
# system preferences
torch.set_default_dtype(torch.double)
seed = np.random.randint(100)
np.random.seed(seed)
torch.manual_seed(seed)
# settings
batch_size = 256
z_dim = 256
lr = 0.0002
plot_every = 100
niter = 10
epsilon = 0.01
ngen = 10
if args.advsy:
lam = {'4mode': 0.001, '5mode': 0.0001}
else:
lam = 0.01
beta = 1
stop_adversary = args.num_iter
l1_reg = args.l1reg
learn_c = args.advsy
train_iter = args.num_iter
modes = args.modes
if l1_reg:
model = 'gwgan_gaussian_l1_{}_adversary_{}_{}'\
.format(modes, learn_c, args.id)
else:
model = 'gwgan_gaussian_{}_adversary_{}_{}'\
.format(modes, learn_c, args.id)
simulation = FUNCTION_MAP[modes]
# data simulation
data, y = simulation(40000)
data_size = len(data)
data = np.concatenate((data, data[:batch_size, :]), axis=0)
y = np.concatenate((y, y[:batch_size]), axis=0)
save_fig_path = 'out_' + model
if not os.path.exists(save_fig_path):
os.makedirs(save_fig_path)
real = data[:1000]
real_y = y[:1000]
fig1 = plt.figure(figsize=(2.4, 2))
if modes == '3d_4mode':
df = pd.DataFrame({'x1': real[:, 0],
'x2': real[:, 1],
'x3': real[:, 2],
'in': real_y})
ax1 = fig1.add_subplot(111, projection='3d')
ax1.scatter3D(df.x1, df.x2, df.x3, c='#1B263B')
ax1.set_zlim([-4, 4])
view_1 = (25, -135)
view_2 = (25, -45)
init_view = view_2
ax1.view_init(*init_view)
ax1.set_zlabel('x3')
else:
df = pd.DataFrame({'x1': real[:, 0],
'x2': real[:, 1],
'in': real_y})
ax1 = fig1.add_subplot(111)
sns.kdeplot(df.x1, df.x2, shade=True, cmap='Blues', n_levels=20, legend=False)
ax1.set_xlim([-4, 4])
ax1.set_ylim([-4, 4])
ax1.set_title(r'target')
fig1.tight_layout()
fig1.savefig(save_fig_path + '/real.pdf')
# define networks and parameters
generator = Generator()
adversary = Adversary()
# weight initialisation
generator.apply(weights_init_generator)
adversary.apply(weights_init_adversary)
# create optimiser
g_optimizer = torch.optim.Adam(generator.parameters(), 5*lr)
c_optimizer = torch.optim.Adam(adversary.parameters(), lr)
# zero gradients
reset_grad(generator, adversary)
# sample for plotting
z_ex = sample_z(1000, z_dim)
# set iterator for plot numbering
i = 0
# learn with and without adversary
if learn_c:
only_g = 0
else:
only_g = train_iter
loss_history = list()
loss_orth = list()
loss_og = 0
for it in range(train_iter):
train_c = ((it + 1) % (ngen + 1) == 0)
start_idx = it * batch_size % data_size
X_mb = data[start_idx:start_idx + batch_size, :]
y_mb = y[start_idx:start_idx + batch_size]
# sample points from latent space
z = sample_z(batch_size, z_dim)
# get data mini batch
x = torch.from_numpy(X_mb[:batch_size, :])
y_s = y_mb[:batch_size]
if it <= only_g:
for q in generator.parameters():
q.requires_grad = True
for p in adversary.parameters():
p.requires_grad = False
g = generator.forward(z)
f_g = g
f_x = x
else:
if train_c and it < stop_adversary:
for q in generator.parameters():
q.requires_grad = False
for p in adversary.parameters():
p.requires_grad = True
else:
for q in generator.parameters():
q.requires_grad = True
for p in adversary.parameters():
p.requires_grad = False
# result generator
g = generator.forward(z)
# result adversary
f_x = adversary.forward(x)
f_g = adversary.forward(g)
# compute inner distances
D_g = get_inner_distances(f_g, metric='euclidean', concat=False)
D_x = get_inner_distances(f_x, metric='euclidean', concat=False)
# distance matrix normalisation
D_x_norm = normalise_matrices(D_x)
D_g_norm = normalise_matrices(D_g)
# compute normalized gromov-wasserstein distance
loss_gw, T = gwnorm_distance((D_x, D_x_norm), (D_g, D_g_norm),
epsilon, niter, loss_fun='square_loss',
coupling=True)
if it < only_g:
# train generator
if l1_reg:
loss_gen = loss_gw + lam * (torch.norm(g, p=1) - 2)
else:
loss_gen = loss_gw
loss_gen.backward()
# parameter updates
g_optimizer.step()
# zero gradients
g_optimizer.zero_grad()
else:
if train_c and it < stop_adversary:
loss_og = loss_procrustes(f_x, x, cuda=False)
loss_adv = -loss_gw + beta * loss_og
# train adversary
loss_adv.backward()
# parameter updates
c_optimizer.step()
# zero gradients
reset_grad(generator, adversary)
else:
# train generator
if l1_reg:
loss_gen = loss_gw + lam[modes] * (torch.norm(g, p=1) - 2)
else:
loss_gen = loss_gw
loss_gen.backward()
# parameter updates
g_optimizer.step()
# zero gradients
reset_grad(generator, adversary)
# plotting
if (it+1) % plot_every == 0:
# get generator example
g_ex = generator.forward(z_ex)
if it >= only_g:
f_gx = adversary.forward(g_ex)
f_gx = f_gx.detach().numpy()
f_dx = adversary.forward(torch.from_numpy(real))
f_dx = f_dx.detach().numpy()
g_ex = g_ex.detach().numpy()
# plotting
fig2 = plt.figure(figsize=(2.4, 2))
ax2 = fig2.add_subplot(111)
result = pd.DataFrame({'x1': g_ex[:, 0],
'x2': g_ex[:, 1]})
sns.kdeplot(result.x1, result.x2,
shade=True, cmap='Blues', n_levels=20, legend=False)
# ax2.set_title(r'$g_\theta(Z)$')
ax2.set_title(r'iteration {}'.format((it+1)))
plt.tight_layout()
fig2.savefig(os.path.join(save_fig_path, 'gen_{}.pdf'.format(
str(i).zfill(3))))
if it >= only_g:
fig6 = plt.figure(figsize=(4.5, 2))
features = pd.DataFrame({'g1': f_gx[:, 0],
'g2': f_gx[:, 1],
'd1': f_dx[:, 0],
'd2': f_dx[:, 1]
})
ax1 = fig6.add_subplot(121)
sns.kdeplot(features.g1, features.g2,
shade=True, cmap='Greys', n_levels=20, legend=False)
# ax1.set_title(r'$f_\omega(g_\theta(Z))$')
ax1.set_xlim([-4, 4])
ax1.set_ylim([-4, 4])
ax1.set_title(r' ')
ax2 = fig6.add_subplot(122)
sns.kdeplot(features.d1, features.d2,
shade=True, cmap='Greys', n_levels=20, legend=False)
ax2.set_xlim([-4, 4])
ax2.set_ylim([-4, 4])
ax2.set_title(r' ')
plt.tight_layout(pad=1)
fig6.savefig(os.path.join(save_fig_path, 'feature_{}.pdf'.format(
str(i).zfill(3))))
fig3, ax = plt.subplots(1, 3, figsize=(6.9, 2))
ax0 = ax[0].imshow(T.detach().numpy(), cmap='RdBu_r')
colorbar(ax0)
ax1 = ax[1].imshow(D_g.detach().numpy(), cmap='Blues')
colorbar(ax1)
ax2 = ax[2].imshow(D_x.detach().numpy(), cmap='Blues')
colorbar(ax2)
ax[0].set_title(r'$T$')
ax[1].set_title(r'Pairwise Distances of $f_\omega(g_\theta(Z))$')
ax[2].set_title(r'Pairwise Distances of $f_\omega(X)$')
plt.tight_layout(pad=1)
fig3.savefig(os.path.join(save_fig_path, 'ccc_{}.pdf'.format(
str(i).zfill(3))), bbox_inches='tight')
plt.close('all')
print('iter:', it+1, 'GW loss:', loss_gw, 'Orth. loss', loss_og)
i += 1
loss_history.append(loss_gw)
loss_orth.append(loss_og)
# plot loss history
fig4 = plt.figure(figsize=(2.4, 2))
ax4 = fig4.add_subplot(111)
ax4.plot(np.arange(len(loss_history))*100, loss_history, 'k.')
ax4.set_xlabel('Iterations')
ax4.set_ylabel(r'$\overline{GW}_\epsilon$ loss')
plt.tight_layout()
fig4.savefig(save_fig_path + '/loss_history.pdf')
fig5 = plt.figure(figsize=(2.4, 2))
ax5 = fig5.add_subplot(111)
ax5.plot(np.arange(len(loss_orth))*100, loss_orth, 'k.')
ax5.set_xlabel('Iterations')
ax5.set_ylabel(r'$R_\beta(f_\omega(X), X)$ loss')
plt.tight_layout()
fig5.savefig(save_fig_path + '/loss_orth.pdf')