-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpred_opensource_models.py
124 lines (91 loc) · 4.9 KB
/
pred_opensource_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import torch
import json
import argparse
from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset
#import GPUtil
stopped_num = 10000000
delay = 10
# Gpus = GPUtil.getGPUs()
def get_gpu_info():
gpulist = []
GPUtil.showUtilization()
for gpu in Gpus:
print('gpu.id:', gpu.id)
print('total GPU:', gpu.memoryTotal)
print('GPU usage:', gpu.memoryUsed)
print('gpu usage percent:', gpu.memoryUtil * 100)
gpulist.append([ gpu.id, gpu.memoryTotal, gpu.memoryUsed,gpu.memoryUtil * 100])
return gpulist
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default=None, help="raw model name for evaluation", choices=["rwkv-4-14b-pile","long_llama_3b","LLaMA-2-7B-32K","chatglm2-6b-32k"])
parser.add_argument('--task', type=str, default=None, help="long context understanding tasks in LooGLE", choices=["shortdep_qa","longdep_qa","longdep_summarization","shortdep_cloze"])
parser.add_argument('--max_length', type=int, default=None, help="the max length of input prompt")
parser.add_argument('--model_path', type=str, default="./Models/")
parser.add_argument('--output_path', type=str, default="./Output/")
return parser.parse_args(args)
def get_pred(model, data_instance, tokenizer, max_length, max_gen, prompt_format, device):
ans, groundtruth = [], []
preds = {}
raw_inputs = data_instance['input']
if data_instance['qa_pairs'] == 'none':
preds['qa_pairs'] = data_instance['qa_pairs']
json_obj = {'input': raw_inputs}
prompt = prompt_format.format(**json_obj)
tokenized_prompt = tokenizer(prompt, truncation=False, return_tensors="pt").input_ids[0]
if len(tokenized_prompt) > max_length:
half = int(max_length/2)
prompt = tokenizer.decode(tokenized_prompt[:half], skip_special_tokens=True)+tokenizer.decode(tokenized_prompt[-half:], skip_special_tokens=True)
input_ids = tokenizer(prompt, truncation=True, return_tensors="pt").input_ids.to(device)
context_length = input_ids.shape[-1]
with torch.no_grad():
output = model.generate(input_ids,max_new_tokens=max_gen,temperature=1.0,num_beams=1,do_sample=False,repetition_penalty=float(2))[0]
pred = tokenizer.decode(output[context_length:], skip_special_tokens=True)
ans.append(pred)
groundtruth.append(data_instance["output"])
else:
preds['qa_pairs'] = eval(data_instance['qa_pairs'])
for j in eval(data_instance['qa_pairs']):
json_obj = {'Q':j['Q'], 'input': raw_inputs}
prompt = prompt_format.format(**json_obj)
tokenized_prompt = tokenizer(prompt, truncation=False, return_tensors="pt").input_ids[0]
if len(tokenized_prompt) > max_length:
half = int(max_length/2)
prompt = tokenizer.decode(tokenized_prompt[:half], skip_special_tokens=True)+tokenizer.decode(tokenized_prompt[-half:], skip_special_tokens=True)
input_ids = tokenizer(prompt, truncation=True, return_tensors="pt").input_ids.to(device)
context_length = input_ids.shape[-1]
with torch.no_grad():
output = model.generate(input_ids,max_new_tokens=max_gen,temperature=1.0,num_beams=1,do_sample=False,repetition_penalty=float(2))[0]
pred = tokenizer.decode(output[context_length:], skip_special_tokens=True)
# del output, input_ids
# torch.cuda.empty_cache()
ans.append(pred)
groundtruth.append(j['A'])
preds['llm_output'] = ans
preds['output'] = groundtruth
return preds
# def loads(path, task):
# data = []
# with open(path+task+".jsonl", "r") as f:
# lines = f.readlines()
# for line in lines:
# data.append(json.loads(line))
# return data
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args = parse_args()
data = load_dataset('bigainlco/LooGLE', args.task, split="test")
#data = loads("LooGLE-testdata/", args.task)
tokenizer = AutoTokenizer.from_pretrained(args.model_path + args.model_name,trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(args.model_path + args.model_name, trust_remote_code=True,torch_dtype=torch.bfloat16 ).to(device)
model.eval()
task2prompt = json.load(open("./config/task2prompt.json", "r"))
task2maxlen = json.load(open("./config/task2maxlen.json", "r"))
prompt_format = task2prompt[args.task]
max_gen = task2maxlen[args.task]
for i in data:
preds = get_pred(model, i, tokenizer, args.max_length, max_gen, prompt_format, device)
with open(args.output_path + args.task + '_' + args.model_name+".jsonl", "a+") as g:
g.write(json.dumps(preds)+'\n')