-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpred_llamaindex.py
135 lines (103 loc) · 5.21 KB
/
pred_llamaindex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import torch
import json
import argparse
from datasets import load_dataset
from llama_index import GPTVectorStoreIndex, Document, ServiceContext
from llama_index.indices.prompt_helper import PromptHelper
from transformers import AutoTokenizer
import openai
import tiktoken
#import GPUtil
stopped_num = 10000000
delay = 10
# Gpus = GPUtil.getGPUs()
def get_gpu_info():
gpulist = []
GPUtil.showUtilization()
for gpu in Gpus:
print('gpu.id:', gpu.id)
print('total GPU:', gpu.memoryTotal)
print('GPU usage:', gpu.memoryUsed)
print('gpu usage percent:', gpu.memoryUtil * 100)
gpulist.append([ gpu.id, gpu.memoryTotal, gpu.memoryUsed,gpu.memoryUtil * 100])
return gpulist
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default="llama-index", help="raw model name for evaluation")
parser.add_argument('--task', type=str, default=None, help="long context understanding tasks in LooGLE", choices=["shortdep_qa","longdep_qa","longdep_summarization","shortdep_cloze"])
parser.add_argument('--max_length', type=int, default=None, help="the max length of input prompt")
parser.add_argument('--model_path', type=str, default="./Models/")
parser.add_argument('--output_path', type=str, default="./Output/")
return parser.parse_args(args)
def num_tokens_from_string(string: str, encoding_name: str) -> int:
"""Returns the number of tokens in a text string."""
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
return num_tokens
def get_pred(data_instance, tokenizer, max_length, max_gen, prompt_format):
ans, groundtruth = [], []
preds = {}
raw_inputs = data_instance['input']
documents = [Document(text=raw_inputs)]
prompt_helper = PromptHelper(
context_window=max_length + 1000,
num_output=max_gen,
chunk_size_limit=1024,
chunk_overlap_ratio=0.1,
)
service_context = ServiceContext.from_defaults(
context_window=max_length + 1000,
num_output=max_gen,
prompt_helper=prompt_helper,
chunk_size_limit=1024,
)
index = GPTVectorStoreIndex.from_documents(documents, service_context=service_context)
query_engine = index.as_query_engine()
if data_instance['qa_pairs'] == 'none':
preds['qa_pairs'] = data_instance['qa_pairs']
json_obj = {'input': raw_inputs}
prompt = prompt_format.format(**json_obj)
tokenized_prompt = tokenizer.encode(prompt)
if len(tokenized_prompt) > max_length:
half = int(max_length/2)
prompt = tokenizer.decode(tokenized_prompt[:half])+tokenizer.decode(tokenized_prompt[-half:])
rsp = query_engine.query(prompt).response
ans.append(rsp)
groundtruth.append(data_instance["output"])
else:
preds['qa_pairs'] = eval(data_instance['qa_pairs'])
for j in eval(data_instance['qa_pairs']):
json_obj = {'Q':j['Q'], 'input': raw_inputs}
prompt = prompt_format.format(**json_obj)
tokenized_prompt = tokenizer.encode(prompt)
if len(tokenized_prompt) > max_length:
half = int(max_length/2)
prompt = tokenizer.decode(tokenized_prompt[:half])+tokenizer.decode(tokenized_prompt[-half:])
rsp = query_engine.query(prompt).response
ans.append(rsp)
groundtruth.append(j['A'])
preds['llm_output'] = ans
preds['output'] = groundtruth
return preds
def loads(path, task):
data = []
with open(path+task+".jsonl", "r") as f:
lines = f.readlines()
for line in lines:
data.append(json.loads(line))
return data
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args = parse_args()
# data = load_dataset('bigainlco/LooGLE', args.task, split="test")
data = loads("LooGLE-testdata/", args.task)
tokenizer = tiktoken.get_encoding("cl100k_base")
task2prompt = json.load(open("./config/task2prompt.json", "r"))
task2maxlen = json.load(open("./config/task2maxlen.json", "r"))
prompt_format = task2prompt[args.task]
max_gen = task2maxlen[args.task]
for i in data:
predictions = get_pred(i, tokenizer, args.max_length, max_gen, prompt_format)
with open(args.output_path + args.task + '_' + args.model_name + ".jsonl", "a+") as g:
g.write(json.dumps(predictions)+'\n')