forked from Jiang-Muyun/PointNet12
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclf.py
215 lines (177 loc) · 7.87 KB
/
clf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import open3d
import argparse
import os
import time
import h5py
import datetime
import numpy as np
from matplotlib import pyplot as plt
import torch
from torch.utils.data import DataLoader
import torch.nn.functional as F
from tqdm import tqdm
import my_log as log
from data_utils.ModelNetDataLoader import ModelNetDataLoader, load_data, class_names
from utils import test_clf, save_checkpoint, select_avaliable, mkdir
from model.pointnet2 import PointNet2ClsMsg
from model.pointnet import PointNetCls, feature_transform_reguliarzer
def parse_args(notebook = False):
parser = argparse.ArgumentParser('PointNet')
parser.add_argument('--model_name', default='pointnet', help='pointnet or pointnet2')
parser.add_argument('--mode', default='train', help='train or eval')
parser.add_argument('--batch_size', type=int, default=16, help='batch size in training')
parser.add_argument('--epoch', default=100, type=int, help='number of epoch in training')
parser.add_argument('--learning_rate', default=0.001, type=float, help='learning rate in training')
parser.add_argument('--gpu', type=str, default='0', help='specify gpu device')
parser.add_argument('--optimizer', type=str, default='Adam', help='optimizer for training')
parser.add_argument('--pretrain', type=str, default=None, help='whether use pretrain model')
parser.add_argument('--decay_rate', type=float, default=1e-4, help='decay rate of learning rate')
parser.add_argument('--feature_transform', default=False, help="use feature transform in pointnet")
parser.add_argument('--augment', default=False, action='store_true', help="Enable data augmentation")
if notebook:
return parser.parse_args([])
else:
return parser.parse_args()
def train(args):
experiment_dir = mkdir('./experiment/')
checkpoints_dir = mkdir('./experiment/clf/%s/'%(args.model_name))
train_data, train_label, test_data, test_label = load_data('experiment/data/modelnet40_ply_hdf5_2048/')
trainDataset = ModelNetDataLoader(train_data, train_label, data_augmentation = args.augment)
trainDataLoader = DataLoader(trainDataset, batch_size=args.batch_size, shuffle=True)
testDataset = ModelNetDataLoader(test_data, test_label)
testDataLoader = torch.utils.data.DataLoader(testDataset, batch_size=args.batch_size, shuffle=False)
log.info('Building Model',args.model_name)
if args.model_name == 'pointnet':
num_class = 40
model = PointNetCls(num_class,args.feature_transform).cuda()
else:
model = PointNet2ClsMsg().cuda()
torch.backends.cudnn.benchmark = True
model = torch.nn.DataParallel(model).cuda()
log.debug('Using gpu:',args.gpu)
if args.pretrain is not None:
log.info('Use pretrain model...')
state_dict = torch.load(args.pretrain)
model.load_state_dict(state_dict)
init_epoch = int(args.pretrain[:-4].split('-')[-1])
log.info('start epoch from', init_epoch)
else:
log.info('Training from scratch')
init_epoch = 0
if args.optimizer == 'SGD':
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
elif args.optimizer == 'Adam':
optimizer = torch.optim.Adam(
model.parameters(),
lr=args.learning_rate,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=args.decay_rate
)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)
LEARNING_RATE_CLIP = 1e-5
global_epoch = 0
global_step = 0
best_tst_accuracy = 0.0
log.info('Start training...')
for epoch in range(init_epoch,args.epoch):
scheduler.step()
lr = max(optimizer.param_groups[0]['lr'],LEARNING_RATE_CLIP)
log.debug(job='clf',model=args.model_name,gpu=args.gpu,epoch='%d/%s' % (epoch, args.epoch),lr=lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
for batch_id, data in tqdm(enumerate(trainDataLoader, 0), total=len(trainDataLoader), smoothing=0.9):
points, target = data
target = target[:, 0]
points = points.transpose(2, 1)
points, target = points.cuda(), target.cuda()
optimizer.zero_grad()
model = model.train()
pred, trans_feat = model(points)
loss = F.nll_loss(pred, target.long())
if args.feature_transform and args.model_name == 'pointnet':
loss += feature_transform_reguliarzer(trans_feat) * 0.001
loss.backward()
optimizer.step()
global_step += 1
log.debug('clear cuda cache')
torch.cuda.empty_cache()
acc = test_clf(model, testDataLoader)
log.info(loss='%.5f' % (loss.data))
log.info(Test_Accuracy='%.5f' % acc)
if acc >= best_tst_accuracy:
best_tst_accuracy = acc
fn_pth = 'clf-%s-%.5f-%04d.pth'%(args.model_name, acc, epoch)
log.debug('Saving model....', fn_pth)
torch.save(model.state_dict(), os.path.join(checkpoints_dir,fn_pth))
global_epoch += 1
log.info(Best_Accuracy = best_tst_accuracy)
log.info('End of training...')
def evaluate(args):
test_data, test_label = load_data('experiment/data/modelnet40_ply_hdf5_2048/', train = False)
testDataset = ModelNetDataLoader(test_data, test_label)
testDataLoader = torch.utils.data.DataLoader(testDataset, batch_size=args.batch_size, shuffle=False)
log.debug('Building Model',args.model_name)
if args.model_name == 'pointnet':
num_class = 40
model = PointNetCls(num_class,args.feature_transform)
else:
model = PointNet2ClsMsg()
torch.backends.cudnn.benchmark = True
model = torch.nn.DataParallel(model).cuda()
log.debug('Using gpu:',args.gpu)
if args.pretrain is None:
log.err('No pretrain model')
return
log.debug('Loading pretrain model...')
state_dict = torch.load(args.pretrain)
model.load_state_dict(state_dict)
acc = test_clf(model.eval(), testDataLoader)
log.msg(Test_Accuracy='%.5f' % (acc))
def vis(args):
test_data, test_label = load_data(root, train = False)
log.info(test_data=test_data.shape,test_label=test_label.shape)
log.debug('Building Model',args.model_name)
if args.model_name == 'pointnet':
num_class = 40
model = PointNetCls(num_class,args.feature_transform).cuda()
else:
model = PointNet2ClsMsg().cuda()
torch.backends.cudnn.benchmark = True
model = torch.nn.DataParallel(model)
model.cuda()
log.info('Using multi GPU:',args.gpu)
if args.pretrain is None:
log.err('No pretrain model')
return
log.debug('Loading pretrain model...')
checkpoint = torch.load(args.pretrain)
model.load_state_dict(checkpoint)
model.eval()
log.info('Press space to exit, press Q for next frame')
for idx in range(test_data.shape[0]):
point_np = test_data[idx:idx+1]
gt = test_label[idx][0]
points = torch.from_numpy(point_np)
points = points.transpose(2, 1).cuda()
pred, trans_feat = model(points)
pred_choice = pred.data.max(1)[1]
log.info(gt=class_names[gt], pred_choice=class_names[pred_choice.cpu().numpy().item()])
point_cloud = open3d.geometry.PointCloud()
point_cloud.points = open3d.utility.Vector3dVector(point_np[0])
vis = open3d.visualization.VisualizerWithKeyCallback()
vis.create_window()
vis.get_render_option().background_color = np.asarray([0, 0, 0])
vis.add_geometry(point_cloud)
vis.register_key_callback(32, lambda vis: exit())
vis.run()
vis.destroy_window()
if __name__ == '__main__':
args = parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
if args.mode == "train":
train(args)
if args.mode == "eval":
evaluate(args)
if args.mode == "vis":
vis(args)