-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy pathconverter_util.py
233 lines (187 loc) · 8.93 KB
/
converter_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import json
import os
import typing
from collections import OrderedDict
import numpy as np
import torch
import torch.nn as nn
from tinynn.util.util import get_logger
log = get_logger(__name__)
def tensor_config(tensors: typing.List[torch.Tensor], transpose: typing.List[bool], with_shape: bool) -> OrderedDict:
"""Generate the tensor info needed for the config file for the TinyNeuralNetwork converter
Args:
tensors (typing.List[torch.Tensor]): The tensors to gather info
transpose (typing.List[bool]): Whether to perform nchw-nhwc transpose for the tensors
with_shape (bool): Whether to dump the shape of the tensor
Returns:
OrderedDict: The info of the tensors
"""
tensor_list = []
for t, trans in zip(tensors, transpose):
tensor_dict = OrderedDict()
if with_shape:
tensor_dict['shape'] = list(t.shape)
try:
tensor_dict['type'] = str(t.detach().numpy().dtype)
except Exception:
type_str = str(t.dtype)
if 'torch.q' in type_str:
type_str = type_str.replace('torch.q', '')
else:
type_str = type_str.replace('torch.', '')
tensor_dict['type'] = type_str
if trans is None:
trans = len(t.shape) == 4
tensor_dict['transpose'] = trans
tensor_list.append(tensor_dict)
return tensor_list
def generate_converter_config(
inputs: typing.List[torch.Tensor],
outputs: typing.List[torch.Tensor],
input_transpose: typing.Union[typing.Iterable[bool], bool],
output_transpose: typing.Union[typing.Iterable[bool], bool],
export_file: str,
tflite_path: typing.Optional[str] = None,
config_path: typing.Optional[str] = None,
):
""" Generate a config file that will work for the TinyNeuralNetwork converter
Args:
inputs (typing.List[torch.Tensor]): The input tensors
outputs (typing.List[torch.Tensor]): The output tensors
input_transpose (typing.Union[typing.Iterable[bool], bool]): The flag whether to insert transpose after the \
input nodes
output_transpose (typing.Union[typing.Iterable[bool], bool]): The flag whether to insert transpose after the \
output nodes
export_file (str): The path of the generate torchscript model
tflite_path (str): The path of the generate tflite model. Defaults to None.
config_path (str): The path of the generate config. Defaults to None.
Raises:
AssertionError: input transpose should either be boolean or list of booleans, under the latter condition, \
the size of the list should be the same of that of the inputs
"""
if type(input_transpose) in (tuple, list):
if len(input_transpose) != len(inputs) or not all((type(x) is bool for x in input_transpose)):
raise AssertionError('input transpose should either be boolean or list of booleans')
elif type(input_transpose) is bool or input_transpose is None:
input_transpose = [input_transpose] * len(inputs)
else:
raise AssertionError('input transpose should either be boolean or list of booleans')
if type(output_transpose) in (tuple, list):
if len(output_transpose) != len(outputs) or not all((type(x) is bool for x in output_transpose)):
raise AssertionError('output transpose should either be boolean or list of booleans')
elif type(output_transpose) is bool or output_transpose is None:
output_transpose = [output_transpose] * len(inputs)
else:
raise AssertionError('output transpose should either be boolean or list of booleans')
if tflite_path is None:
tflite_path = export_file.replace('.pt', '.tflite')
json_obj = OrderedDict(
{
'src_model': export_file,
'dst_model': tflite_path,
'inputs': tensor_config(inputs, input_transpose, True),
'outputs': tensor_config(outputs, output_transpose, False),
}
)
if config_path is None:
config_path = export_file.replace('.pt', '.json')
with open(config_path, 'w') as f:
json.dump(json_obj, f, indent=4)
def export_converter_files(
model: nn.Module,
dummy_input: typing.Union[torch.Tensor, typing.Iterable[torch.Tensor]],
export_dir: typing.Optional[str] = None,
model_name: typing.Optional[str] = None,
input_transpose: typing.Optional[typing.Union[bool, typing.Iterable[bool]]] = None,
output_transpose: typing.Optional[typing.Union[bool, typing.Iterable[bool]]] = None,
dump_graph: bool = False,
):
""" Automatically generate required files for the model converter
Args:
model (nn.Module): The input model
dummy_input (typing.Union[torch.Tensor, typing.Iterable[torch.Tensor]]): A viable input to the model
export_dir (typing.Optional[str], optional): Directory to use for exporting. Defaults to None(os.getcwd()).
model_name (typing.Optional[str], optional): File name for exporting. Defaults to None("jit_model").
input_transpose (typing.Optional[typing.Union[bool, typing.Iterable[bool]]], optional): Whether to transpose \
the input(s). Defaults to None(True for 4d-input, False otherwise).
output_transpose (typing.Optional[typing.Union[bool, typing.Iterable[bool]]], optional): Whether to transpose \
the input(s). Defaults to None(True for 4d-output, False otherwise).
dump_graph (bool, optional): Whether to print the traced graph. Defaults to False.
"""
if export_dir is None:
export_dir = os.getcwd()
if model_name is None:
model_name = 'jit_model'
export_file = os.path.abspath(os.path.join(export_dir, f'{model_name}.pt'))
script = torch.jit.trace(model, dummy_input)
if dump_graph:
log.info(script.inlined_graph)
os.makedirs(export_dir, exist_ok=True)
torch.jit.save(script, export_file)
if type(dummy_input) not in (tuple, list):
inputs = [dummy_input]
else:
inputs = dummy_input
output = model(*inputs)
if type(output) not in (tuple, list):
outputs = [output]
else:
new_output = []
for item in output:
if type(item) in (tuple, list):
new_output.extend(item)
else:
new_output.append(item)
outputs = new_output
generate_converter_config(inputs, outputs, input_transpose, output_transpose, export_file)
def get_tensor_details(config):
input_shapes = []
input_transpose = []
input_dtypes = []
output_transpose = []
input_shapes.extend((inp['shape'] for inp in config['inputs']))
input_transpose.extend((inp['transpose'] for inp in config['inputs']))
input_dtypes.extend((inp['type'] for inp in config['inputs']))
output_transpose.extend((outp['transpose'] for outp in config['outputs']))
return input_shapes, input_transpose, input_dtypes, output_transpose
def prepare_input_arrays(input_shapes, input_transpose, input_dtypes):
inputs = []
for i in range(len(input_shapes)):
input_shape = input_shapes[i]
tranpose = input_transpose[i]
input_data = np.zeros(input_shape, dtype=input_dtypes[i])
if tranpose:
input_data = input_data.transpose((0, 2, 3, 1))
inputs.append(input_data)
return inputs
def data_to_pytorch(inputs, input_transpose):
torch_inputs = list(map(torch.from_numpy, inputs))
for i in range(len(torch_inputs)):
if input_transpose[i]:
torch_inputs[i] = torch_inputs[i].permute(0, 3, 1, 2)
return torch_inputs
def parse_config(
json_file: str, prepare_inputs: bool = True
) -> typing.Tuple[str, str, typing.List[bool], typing.List[torch.Tensor], typing.List[bool]]:
"""Parses the configuration file for converter
Args:
json_file (str): The path of the configuration file
prepare_inputs (bool, optional): Whether to prepare inputs. Defaults to True.
Returns:
tflite_model_path (str): The path used to place the generated tflite model
torch_model_path (str): The path of the torchscript model
input_transpose (typing.List[bool]): Flag variables whether the inputs will be transposed (nchw -> nhwc)
torch_inputs (typing.List[torch.Tensor]): The prepared inputs if prepare_inputs is True, otherwise None
output_transpose (typing.List[bool]): Flag variables whether the outputs will be transposed (nchw -> nhwc)
"""
with open(json_file, 'r') as f:
config = json.load(f)
tflite_model_path = config['dst_model']
torch_model_path = config['src_model']
if prepare_inputs:
input_shapes, input_transpose, input_dtypes, output_transpose = get_tensor_details(config)
inputs = prepare_input_arrays(input_shapes, input_transpose, input_dtypes)
torch_inputs = data_to_pytorch(inputs, input_transpose)
else:
torch_inputs = None
return torch_model_path, tflite_model_path, input_transpose, torch_inputs, output_transpose