forked from pytorch/ao
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweight_tensor_linear_activation_quantization.py
203 lines (170 loc) · 6.93 KB
/
weight_tensor_linear_activation_quantization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from typing import Any, Callable, Dict, Optional
import torch
from torch.utils._python_dispatch import return_and_correct_aliasing
from torchao.utils import (
TORCH_VERSION_AT_LEAST_2_5,
TorchAOBaseTensor,
)
__all__ = [
"WeightTensorWithLinearActivationQuantizationMetadata",
"to_weight_tensor_with_linear_activation_quantization_metadata",
]
aten = torch.ops.aten
class WeightTensorWithLinearActivationQuantizationMetadata(TorchAOBaseTensor):
"""
Tensor subclass that wraps a weight tensor and provides metadata for linear activation static quantization.
Args:
original_weight_tensor (torch.Tensor): The weight tensor to be wrapped.
input_quant_func_static (Callable): The quantization function for inputs.
Must have the signature: (Tensor, scale: Tensor, zero_point: Optional[Tensor], **quant_kwargs) -> Tensor
scale (torch.Tensor): The scale tensor for activation quantization.
zero_point (Optional[torch.Tensor]): The zero point tensor for activation quantization. Default is None.
quant_kwargs (Dict[str, Any]): Additional keyword arguments for the quantization function.
Restriction: Must not contain tensor values.
"""
original_weight_tensor: torch.Tensor
input_quant_func_static: Callable
scale: torch.Tensor
zero_point: Optional[torch.Tensor]
quant_kwargs: Dict[str, Any]
def __new__(
cls,
original_weight_tensor: torch.Tensor,
input_quant_func_static: Callable,
scale: torch.Tensor,
zero_point: Optional[torch.Tensor],
quant_kwargs: Dict[str, Any],
):
kwargs = {}
dtype = original_weight_tensor.dtype
kwargs["dtype"] = dtype
kwargs["requires_grad"] = False
kwargs["device"] = original_weight_tensor.device
shape = original_weight_tensor.shape
return torch.Tensor._make_wrapper_subclass(cls, shape, **kwargs) # type: ignore[attr-defined]
def __init__(
self,
original_weight_tensor: torch.Tensor,
input_quant_func_static: Callable[
[torch.Tensor, torch.Tensor, Optional[torch.Tensor], Dict[str, Any]],
torch.Tensor,
],
scale: torch.Tensor,
zero_point: Optional[torch.Tensor],
quant_kwargs: Dict[str, Any],
):
self.original_weight_tensor = original_weight_tensor
self.input_quant_func_static = input_quant_func_static
self.scale = scale
self.zero_point = zero_point
self.quant_kwargs = quant_kwargs
def __repr__(self):
return f"{self.__class__.__name__}({self.original_weight_tensor}, {self.input_quant_func_static}, scale={self.scale}, zero_point={self.zero_point}, quant_kwargs={self.quant_kwargs})"
def __tensor_flatten__(self):
tensor_data = ["original_weight_tensor", "scale"]
if self.zero_point is not None:
tensor_data.append("zero_point")
return tensor_data, [self.input_quant_func_static, self.quant_kwargs]
@classmethod
def __tensor_unflatten__(
cls, tensor_data_dict, tensor_attributes, outer_size, outer_stride
):
original_weight_tensor = tensor_data_dict["original_weight_tensor"]
input_quant_func_static, quant_kwargs = tensor_attributes
zero_point = tensor_data_dict.get("zero_point", None)
return cls(
original_weight_tensor,
input_quant_func_static,
tensor_data_dict["scale"],
zero_point,
quant_kwargs,
)
@staticmethod
def _quantized_linear_op(
input_tensor: torch.Tensor, weight_tensor: torch.Tensor, bias: torch.Tensor
):
input_quant_func_static = weight_tensor.input_quant_func_static
original_weight_tensor = weight_tensor.original_weight_tensor
scale = weight_tensor.scale
zero_point = weight_tensor.zero_point
quant_kwargs = weight_tensor.quant_kwargs
quantized_input_act = input_quant_func_static(
input_tensor, scale=scale, zero_point=zero_point, **quant_kwargs
)
return torch.nn.functional.linear(
quantized_input_act, original_weight_tensor, bias
)
@classmethod
def from_float(
cls,
input_float: torch.Tensor,
input_quant_func: Callable,
scale: torch.Tensor,
zero_point: Optional[torch.Tensor] = None,
quant_kwargs: Optional[Dict[str, Any]] = None,
):
if quant_kwargs is None:
quant_kwargs = {}
return cls(input_float, input_quant_func, scale, zero_point, quant_kwargs)
def _apply_fn_to_data(self, fn):
return self.__class__(
fn(self.original_weight_tensor),
self.input_quant_func_static,
fn(self.scale),
fn(self.zero_point) if self.zero_point is not None else None,
self.quant_kwargs,
)
def to(self, *args, **kwargs):
kwargs = self._get_to_kwargs(*args, **kwargs)
device = kwargs.pop("device")
return self.__class__(
self.original_weight_tensor.to(device),
self.input_quant_func_static,
self.scale.to(device),
self.zero_point.to(device) if self.zero_point is not None else None,
self.quant_kwargs,
)
implements = WeightTensorWithLinearActivationQuantizationMetadata.implements
@implements(torch.nn.functional.linear)
def _(func, types, args, kwargs):
input_tensor, weight_tensor, bias = (
args[0],
args[1],
args[2] if len(args) > 2 else None,
)
if isinstance(weight_tensor, WeightTensorWithLinearActivationQuantizationMetadata):
return weight_tensor._quantized_linear_op(input_tensor, weight_tensor, bias)
raise NotImplementedError(
"LinearActivationQuantizedTensor: No specialized dispatch found for linear op"
)
@implements(aten.detach.default)
def _(func, types, args, kwargs):
return return_and_correct_aliasing(
func, args, kwargs, args[0]._apply_fn_to_data(torch.detach)
)
@implements(aten.clone.default)
def _(func, types, args, kwargs):
return return_and_correct_aliasing(
func, args, kwargs, args[0]._apply_fn_to_data(torch.clone)
)
@implements(aten._to_copy.default)
def _(func, types, args, kwargs):
return return_and_correct_aliasing(
func,
args,
kwargs,
args[0].to(*args[1:], **kwargs)._apply_fn_to_data(torch.clone),
)
@implements(aten.t.default)
def _(func, types, args, kwargs):
return return_and_correct_aliasing(
func, args, kwargs, args[0]._apply_fn_to_data(torch.t)
)
to_weight_tensor_with_linear_activation_quantization_metadata = (
WeightTensorWithLinearActivationQuantizationMetadata.from_float
)
if TORCH_VERSION_AT_LEAST_2_5:
# Allow a model with LinearActivationQuantizedTensor weights to be loaded with `weights_only=True`
torch.serialization.add_safe_globals(
[WeightTensorWithLinearActivationQuantizationMetadata]
)