-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_semi.py
255 lines (223 loc) · 7.58 KB
/
train_semi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import argparse
import os
import random
from itertools import cycle
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import yaml
from torch.optim import lr_scheduler
from torch.utils.tensorboard import SummaryWriter
from models.models import get_model, get_optimizer
from potential_net import KanNet
from svgd.semi import trades_svgd, trades_svgd_ot
from utils.accuracy import accuracy
from utils.datasets import get_data_loader
from utils.vat import vat_loss
def write_log(log, log_path):
f = open(log_path, mode="a")
f.write(str(log))
f.write("\n")
f.close()
def seed_everything(seed):
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def get_supsem_settings(ds):
if ds == "mnist":
xi = 10.0
epsilon = 0.01
step_size = 0.01
perturb_steps = 1
beta = 30.0
num_label = 500
params = {
"epsilon": epsilon,
"step_size": step_size,
"perturb_steps": perturb_steps,
"beta": beta,
"num_label": num_label,
"xi": xi,
}
return params
elif ds == "cifar10":
xi = 10.0
epsilon = 0.0005
step_size = 0.007
perturb_steps = 1
beta = 30.0
num_label = 4000
params = {
"epsilon": epsilon,
"step_size": step_size,
"perturb_steps": perturb_steps,
"beta": beta,
"num_label": num_label,
"xi": xi,
}
return params
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default="cifar10")
parser.add_argument("--model", type=str, default="cnn13", help="cnn|resnet")
parser.add_argument("--num_epochs", type=int, default=1000)
parser.add_argument("--num_label", type=int, default=4000)
parser.add_argument("--batch_size", type=int, default=100)
parser.add_argument("--method", type=str, default="trades_svgd")
parser.add_argument("--beta", type=float, default=30.0, help="wdr weight")
parser.add_argument("--gamma", type=float, default=0.0, help="ws weight")
parser.add_argument("--n", type=int, default=4, help="num particles")
parser.add_argument("--seed", type=int, default=0, help="seed")
opt = parser.parse_args()
seed_everything(opt.seed)
print(opt)
paras = (
str(opt)
.replace(", ", "")
.replace("'", "")
.replace("(", "")
.replace(")", "")
.replace("Namespace", "")
.replace(f"method={opt.method}", "")
.replace(f"model={opt.model}", "")
.replace(f"dataset={opt.dataset}", "")
.replace(f"num_label={opt.num_label}", "")
)
print(paras)
prefix = [opt.dataset, opt.method, opt.model, str(opt.num_label), paras]
log = os.path.join("log_semi", *prefix)
# os.system("rm -Rf {}".format(log))
writer = SummaryWriter(log)
log_file = os.path.join(log, "log.txt")
with open(os.path.join(log, "config.yaml"), "w") as outfile:
yaml.dump(vars(opt), outfile, default_flow_style=False)
params = get_supsem_settings(opt.dataset)
params["num_label"] = opt.num_label
params["beta"] = opt.beta
params["gamma"] = opt.gamma
print(params)
label_loader, unlab_loader, test_loader = get_data_loader(
ds=opt.dataset, batch_size=opt.batch_size, num_label=opt.num_label
)
def train(model, kannet, label_x, label_y, unlab_x, optimizer, kannet_optimizer, epoch):
loss_ws = torch.zeros(1)
if opt.method == "trades_svgd":
loss_natural, loss_robust, loss, _ = trades_svgd(
model,
label_x,
label_y,
unlab_x,
optimizer,
n=opt.n,
sigma=None,
xi=params["xi"],
eps=params["epsilon"],
niter=params["perturb_steps"],
beta=params["beta"],
epoch=epoch,
)
if opt.method == "trades_svgd_ot":
loss_natural, loss_robust, loss_ws, loss = trades_svgd_ot(
model,
kannet,
label_x,
label_y,
unlab_x,
optimizer,
kannet_optimizer,
n=opt.n,
sigma=None,
xi=params["xi"],
eps=params["epsilon"],
niter=params["perturb_steps"],
beta=params["beta"],
gamma=params["gamma"],
epoch=epoch,
)
elif opt.method == "vat":
# vat_loss = VATLoss(xi=10.0, eps=params["epsilon"], ip=1, beta=params["beta"])
loss_natural, loss_robust, loss, x_adv = vat_loss(
model,
label_x,
label_y,
unlab_x,
optimizer,
n=opt.n,
xi=params["xi"],
eps=params["epsilon"],
niter=params["perturb_steps"],
beta=params["beta"],
epoch=epoch,
)
else:
loss_robust = torch.tensor(0.0).detach()
ce = nn.CrossEntropyLoss()
y_pred = model(label_x)
loss_natural = ce(y_pred, label_y)
loss = loss_natural
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss_natural, loss_robust, loss_ws
model = get_model(ds=opt.dataset, model=opt.model, activation=nn.ReLU())
model.cuda()
kannet = KanNet(model.latent_dim).cuda()
optimizer, lr = get_optimizer(ds=opt.dataset, model=model, architecture=opt.model)
kannet_optimizer = torch.optim.SGD(kannet.parameters(), lr=0.1)
kannet_scheduler = lr_scheduler.CosineAnnealingLR(
kannet_optimizer, T_max=opt.num_epochs, eta_min=0.0001
)
scheduler = lr_scheduler.CosineAnnealingLR(
optimizer, T_max=opt.num_epochs, eta_min=0.0001
)
# train the network
prv_acc = 0.0
print("Start training ...")
for epoch in range(opt.num_epochs):
scheduler.step()
kannet_scheduler.step()
total_ws = 0.0
total_robust = 0.0
total_natural = 0.0
for i, ((label_x, label_y), (unlab_x, unlab_y)) in enumerate(
zip(cycle(label_loader), unlab_loader)
):
label_x, label_y = label_x.cuda(), label_y.cuda()
unlab_x, unlab_y = unlab_x.cuda(), unlab_y.cuda()
step_natural, step_robust, step_ws = train(
model, kannet, label_x, label_y, unlab_x, optimizer, kannet_optimizer, epoch
)
total_robust += step_robust
total_natural += step_natural
total_ws += step_ws
# print(i)
total_robust = total_robust / i
total_natural = total_natural / i
total_ws = total_ws / i
test_acc = accuracy(model, test_loader)
writer.add_scalar("Acc/test", test_acc, epoch)
log_str = "|Epoch: {:>6}| Loss robust: {:.6f}| WS loss: {:.6f} |Natural loss: {:.6f}| Test Accuracy: {:.6f} |".format(
epoch, total_robust.item(), total_ws.item(), total_natural.item(), test_acc
)
print(log_str)
write_log(log_str, log_file)
if test_acc > prv_acc:
print("Saving ...")
os.makedirs(os.path.join("ckpt_semi", *prefix), exist_ok=True)
PATH = os.path.join("ckpt_semi", *(prefix + ["ckpt_{}.pt".format(epoch)]))
# torch.save(model, PATH)
prv_acc = test_acc
write_log("BEST", log_file)
writer.add_scalar("Loss/loss_robust", total_robust.item(), epoch)
writer.add_scalar("Loss/loss_natural", total_natural.item(), epoch)
test_acc = accuracy(model, test_loader)
print("Test Accuracy: {}".format(test_acc))
writer.add_scalar("Acc/test", test_acc, epoch)
print("Saving last...")
os.makedirs(os.path.join("ckpt_semi", *prefix), exist_ok=True)
PATH = os.path.join("ckpt_semi", *(prefix + ["ckpt_{}_last.pt".format(epoch)]))
# torch.save(model, PATH)