-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathruntime_semi.py
131 lines (107 loc) · 4.16 KB
/
runtime_semi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import argparse
from datetime import datetime
from itertools import cycle
import numpy as np
import torch
import torch.nn as nn
from torch.optim import lr_scheduler
from models.models import get_model, get_optimizer
from svgd.semi import trades_svgd_supsem_loss
from utils.datasets import get_data_loader, get_supsem_settings
from utils.vat_new import vat_loss
torch.manual_seed(2021)
np.random.rand(2021)
# 1. all particles 2. sequence 3. noises
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default="cifar10")
parser.add_argument("--model", type=str, default="cnn13", help="cnn|resnet")
parser.add_argument("--num_epochs", type=int, default=1)
parser.add_argument("--num_label", type=int, default=4000)
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--trial", type=int, default=2, help="4000")
parser.add_argument("--gpu_id", type=str, default="1")
parser.add_argument("--method", type=str, default="trades_svgd_mixup")
parser.add_argument("--n", type=int, default=4, help="num particles")
opt = parser.parse_args()
dataset = "cifar10"
attacks = ["vat", "trades_svgd"]
opt.dataset = dataset
particles = [1, 2, 4]
model = "cnn13"
opt.model = model
for attack in attacks:
opt.method = attack
for n in particles:
opt.n = n
params = get_supsem_settings(opt.dataset)
params["num_label"] = opt.num_label
label_loader, unlab_loader, test_loader = get_data_loader(
ds=opt.dataset, batch_size=opt.batch_size, num_label=opt.num_label
)
def train(model, label_x, label_y, unlab_x, optimizer, epoch, is_runtime=True):
if opt.method == "trades_svgd":
loss_natural, loss_robust, loss, x_adv = trades_svgd_supsem_loss(
model,
label_x,
label_y,
unlab_x,
optimizer,
n=opt.n,
sigma=None,
xi=params["xi"],
eps=params["epsilon"],
niter=params["perturb_steps"],
beta=params["beta"],
epoch=epoch,
is_runtime=is_runtime,
)
elif opt.method == "vat":
# vat_loss = VATLoss(xi=10.0, eps=params["epsilon"], ip=1, beta=params["beta"])
loss_natural, loss_robust, loss, x_adv = vat_loss(
model,
label_x,
label_y,
unlab_x,
optimizer,
n=opt.n,
xi=params["xi"],
eps=params["epsilon"],
niter=params["perturb_steps"],
beta=params["beta"],
epoch=epoch,
is_runtime=is_runtime,
)
else:
loss_robust = torch.tensor(0.0).detach()
ce = nn.CrossEntropyLoss()
y_pred = model(label_x)
loss_natural = ce(y_pred, label_y)
loss = loss_natural
return loss_natural, loss_robust, x_adv
model = get_model(ds=opt.dataset, model=opt.model, activation=nn.ReLU())
model.cuda()
optimizer, lr = get_optimizer(
ds=opt.dataset, model=model, architecture=opt.model
)
scheduler = lr_scheduler.CosineAnnealingLR(
optimizer, T_max=opt.num_epochs, eta_min=0.0001
)
print("#" * 10)
start_time = datetime.now()
scheduler.step()
for i, ((label_x, label_y), (unlab_x, unlab_y)) in enumerate(
zip(cycle(label_loader), unlab_loader)
):
label_x, label_y = label_x.cuda(), label_y.cuda()
unlab_x, unlab_y = unlab_x.cuda(), unlab_y.cuda()
train(model, label_x, label_y, unlab_x, optimizer, 1, is_runtime=False)
batch_runtime = datetime.now() - start_time
total_time = batch_runtime.total_seconds()
print(
opt.dataset,
opt.method,
opt.model,
opt.n,
total_time,
total_time / ((i + 1) * opt.batch_size),
)