-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_cifar.py
97 lines (90 loc) · 3.51 KB
/
main_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from __future__ import print_function, absolute_import
import argparse
from model_cifar import ModelBaseline, ModelADA, ModelMEADA, ModelWDR
def main():
train_arg_parser = argparse.ArgumentParser(description="parser")
train_arg_parser.add_argument("--seed", type=int, default=1, help="")
train_arg_parser.add_argument(
"--dataset",
type=str,
default="cifar10",
choices=["cifar10", "cifar100"],
help="Choose between CIFAR-10, CIFAR-100.",
)
train_arg_parser.add_argument(
"--algorithm",
type=str,
default="MEADA",
choices=["ERM", "ADA", "MEADA", "WDR", "LVAT"],
help="Choose algorithm.",
)
train_arg_parser.add_argument(
"--model",
type=str,
default="wrn",
choices=["wrn", "allconv", "densenet", "resnext"],
help="Choose architecture.",
)
train_arg_parser.add_argument(
"--model_ckpt",
type=str,
default="none",
help="Model path.",
)
train_arg_parser.add_argument(
"--epochs", type=int, default=100, help="Number of epochs to train."
)
train_arg_parser.add_argument("--batch_size", type=int, default=128, help="")
train_arg_parser.add_argument(
"--num_workers", type=int, default=4, help="Number of pre-fetching threads."
)
train_arg_parser.add_argument("--lr", type=float, default=0.1, help="")
train_arg_parser.add_argument("--lr_max", type=float, default=20.0, help="")
train_arg_parser.add_argument(
"--momentum", type=float, default=0.9, help="Momentum."
)
train_arg_parser.add_argument("--weight_decay", type=float, default=0.0005, help="")
train_arg_parser.add_argument("--logs", type=str, default="logs/", help="")
train_arg_parser.add_argument("--model_path", type=str, default="", help="")
train_arg_parser.add_argument("--deterministic", type=bool, default=False, help="")
train_arg_parser.add_argument("--epochs_min", type=int, default=10, help="")
train_arg_parser.add_argument("--loops_adv", type=int, default=15, help="")
train_arg_parser.add_argument("--k", type=int, default=2, help="")
train_arg_parser.add_argument("--eta", type=float, default=1.0, help="")
train_arg_parser.add_argument("--xi", default=1e-2, type=float, help="VAT xi")
train_arg_parser.add_argument("--eps", default=1, type=float, help="VAT epsilon")
train_arg_parser.add_argument(
"--n_particles", default=2, type=int, help="number of adversarial particles"
)
train_arg_parser.add_argument(
"--loss_type",
type=str,
default="trade",
choices=["pgd", "trade"],
help="Choose loss type.",
)
# WRN Architecture options
train_arg_parser.add_argument(
"--layers", default=40, type=int, help="total number of layers"
)
train_arg_parser.add_argument(
"--widen-factor", default=2, type=int, help="Widen factor"
)
train_arg_parser.add_argument(
"--droprate", default=0.0, type=float, help="Dropout probability"
)
args = train_arg_parser.parse_args()
print(args.algorithm)
if args.algorithm == "ERM":
model_obj = ModelBaseline(flags=args)
elif args.algorithm == "ADA":
model_obj = ModelADA(flags=args)
elif args.algorithm == "MEADA":
model_obj = ModelMEADA(flags=args)
elif args.algorithm in ["WDR", "VAT"]:
model_obj = ModelWDR(flags=args)
else:
raise RuntimeError
model_obj.train(flags=args)
if __name__ == "__main__":
main()