-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathInput_data_NB_initiation.R
68 lines (56 loc) · 3.18 KB
/
Input_data_NB_initiation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
###### Input data to fit neuroblastoma initiation
library(openxlsx)
library(moments)
source("Settings.R")
load(paste0(rdata.directory, "MRCA_timing.RData"))
tmm.tumors <- c(rownames(sample.information.discovery[sample.information.discovery$Telomere.maintenance.mechanism!="None" &
sample.information.discovery$Sample.type %in% c("Primary", "Metastasis"),]),
rownames(sample.information.validation[sample.information.validation$Telomere.maintenance.mechanism!="None" &
sample.information.validation$Sample.type %in% c("Primary", "Metastasis"),]))
no.tmm.tumors <- c(rownames(sample.information.discovery[sample.information.discovery$Telomere.maintenance.mechanism=="None" &
sample.information.discovery$Sample.type %in% c("Primary", "Metastasis"),]),
rownames(sample.information.validation[sample.information.validation$Telomere.maintenance.mechanism=="None" &
sample.information.validation$Sample.type %in% c("Primary", "Metastasis"),]))
## collect the cumulative distribution of MRCA densities
P.MRCA = data.frame(Density=mutation.time.mrca[tmm.tumors,]$Mean)
rownames(P.MRCA) <- tmm.tumors
P.MRCA <- P.MRCA[order(P.MRCA$Density),,drop=F]
P.MRCA <- P.MRCA[!is.na(P.MRCA$Density),,drop=F]
P.MRCA$P <- seq(1, nrow(P.MRCA))/nrow(P.MRCA)
## lower and upper bounds
P.MRCA$P.upper = sapply(P.MRCA$Density, function(x){
sum(mutation.time.mrca[tmm.tumors,]$Min <= x, na.rm = T)
})/nrow(P.MRCA)
P.MRCA$P.lower = sapply(P.MRCA$Density, function(x){
sum(mutation.time.mrca[tmm.tumors,]$Max <= x, na.rm = T)
})/nrow(P.MRCA)
## collect the cumulative distribution of ECA densities
P.ECA = data.frame(Density=mutation.time.eca[tmm.tumors,]$Mean)
rownames(P.ECA) <- tmm.tumors
P.ECA <- P.ECA[order(P.ECA$Density),,drop=F]
P.ECA <- P.ECA[!is.na(P.ECA$Density),,drop=F]
## in tetraploid tumors, tetraploidy is likely not the initiating event; thus subset
P.ECA <- P.ECA[setdiff(rownames(P.ECA), c(tetraploid.tumors.discovery, tetraploid.tumors.validation)),,drop=F]
P.ECA$P <- seq(1, nrow(P.ECA))/nrow(P.ECA)
## lower and upper bounds
P.ECA$P.upper = sapply(P.ECA$Density, function(x){
sum(mutation.time.eca[rownames(P.ECA),]$Min <= x, na.rm = T)
})/nrow(P.ECA)
P.ECA$P.lower = sapply(P.ECA$Density, function(x){
sum(mutation.time.eca[rownames(P.ECA),]$Max <= x, na.rm = T)
})/nrow(P.ECA)
## collect the cumulative distribution of MRCA densities in low-risk tumors
P.MRCA.lr = data.frame(Density=mutation.time.mrca[no.tmm.tumors,]$Mean)
rownames(P.MRCA.lr) <- no.tmm.tumors
P.MRCA.lr <- P.MRCA.lr[order(P.MRCA.lr$Density),,drop=F]
P.MRCA.lr <- P.MRCA.lr[!is.na(P.MRCA.lr$Density),,drop=F]
P.MRCA.lr$P <- seq(1, nrow(P.MRCA.lr))/nrow(P.MRCA.lr)
## lower and upper bounds
P.MRCA.lr$P.upper = sapply(P.MRCA.lr$Density, function(x){
sum(mutation.time.mrca[no.tmm.tumors,]$Min <= x, na.rm = T)
})/nrow(P.MRCA.lr)
P.MRCA.lr$P.lower = sapply(P.MRCA.lr$Density, function(x){
sum(mutation.time.mrca[no.tmm.tumors,]$Max <= x, na.rm = T)
})/nrow(P.MRCA.lr)
save(P.MRCA, P.ECA, P.MRCA.lr,
file=paste0(rdata.directory, "Input_data_NB_initiation.RData"))