-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSFEM.py
119 lines (92 loc) · 4.5 KB
/
SFEM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import numpy as np
from FeedbackART import FeedbackART
# TODO: not to use index 0 <= no meaning
class SFEM:
"""
SF-EM from the paper below
- Kim, Ue-Hwan, and Jong-Hwan Kim. "A Stabilized Feedback Episodic Memory (SF-EM) and
Home Service Provision Framework for Robot and IoT Collaboration."
IEEE transactions on cybernetics (2018).
"""
def __init__(self, num_channel, input_dim, complement_coded=True, gamma=0.01, alpha1=0.5,
alpha2=0.5, rho1=0.77, rho2=0.95, contribution_param="", memory_strength=0.75,
memory_decay_factor=0.01, memory_reinforcement=0.15, memory_threshold=0.1):
# ART 1: input to event (complement coding: O, memory evolution: X)
self.event_layer = FeedbackART(num_channel, input_dim, complement_coded, gamma, alpha1,
rho1, contribution_param, memory_strength, memory_decay_factor,
memory_reinforcement, memory_threshold, False)
# ART 2: event to episode (complement coding: X, memory evolution: O)
self.episode_layer = FeedbackART(1, [self.event_layer.n_category], False, 0, alpha2,
rho2, contribution_param, memory_strength, memory_decay_factor,
memory_reinforcement, memory_threshold, True)
def train(self, sequence, learn=True):
# indices = np.array([self.event_layer.train(seq, learn) for seq in sequence])
indices = np.array(self.event_layer.train(sequence, learn))
while self.episode_layer.input_dim[0] < self.event_layer.n_category:
self.episode_layer.increase_input_field()
encoded_episode = np.array([self.encode_sequence(indices)])
episode_idx = self.episode_layer.train(encoded_episode, learn)
return episode_idx
def test(self, sequence, learn=True):
clustering_result = self.train(sequence, shuffle=False, train=False)
return clustering_result
def readout_event(self, idx):
assert idx < self.episode_layer.n_category, "index out of bound"
sequence = self.decode_sequence(self.episode_layer.w[idx])
return [self.event_layer.readout(seq) for seq in sequence]
def readout_episode(self, idx):
assert idx < self.episode_layer.n_category, "index out of bound"
return self.decode_sequence(self.episode_layer.w[idx])
@staticmethod
def decode_sequence(in_vector):
""" Decode deep-art sequences
>>> test_vec = [np.array([10, 32, 16, 68, 1]) / 100]
>>> EMART.decode_sequence(test_vec)
[3, 1, 2, 0, 3, 0, 4]
"""
indices = []
vector = in_vector[0]
# reverse normalization
m = max([len(str(v)) for v in vector]) # because of floating point error, str conversion was used
vector = vector * 10 ** (m - 2)
while any(vector > 0):
max_power = max([len("{0:b}".format(int(v))) for v in vector])
curr_idx = np.argmax(vector)
indices.append(curr_idx)
vector[curr_idx] -= 2 ** (max_power - 1)
return np.array(indices)
def encode_sequence(self, indices):
vector = np.zeros(self.event_layer.n_category)
# Following Deep ART encoding => no need to employ buffer channel in implementation
for idx in indices:
tmp = np.zeros(self.event_layer.n_category)
tmp[idx] = 1
vector = vector * 2 + tmp
# normalization
m = int(np.log10(max(vector)))
vector = vector / (10 ** (m + 1))
return np.array([vector])
def prediction_with_partial_cue(self, sequence, raw=True):
if raw:
cue_idx = self.learn_or_classify(sequence, False)
else:
encoded_seq = self.encode_sequence(sequence)
cue_idx = self.episode_layer.learn_or_classify(encoded_seq, False)
return self.readout_episode(cue_idx)
if __name__ == "__main__":
from numpy import random
from utils import make_2d_seq_data
# Test: 2-D case
random.seed(43)
art = SFEM(2, [1, 1])
num_episode = 10
min_seq_len = 2
max_seq_len = 10
# generate a training set
episodes = [make_2d_seq_data(random.randint(min_seq_len, max_seq_len)) for _ in range(num_episode)]
# training the EMART
for i in range(len(episodes)):
art.train(episodes[i], learn=True)
# print out the training result
for i in range(len(episodes)):
print("episode", i + 1, ": ", art.readout_episode(i + 1))