-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
146 lines (127 loc) · 5.67 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import numpy as np
import torch
from sklearn.metrics import accuracy_score, recall_score, precision_score, roc_auc_score, f1_score
from torch.utils.data import DataLoader
import cuda_utils
from dataset import collate, TreeDataset
from model import TBCnnModel
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
config = {
'max_tree_size': 3000,
'max_children_size': 200,
'conv_layer_num': 1,
'conv_output': 128,
'class_num': 2,
'max_epoch': 50,
'batch_size': 4,
'embedding_dim': 128,
'embedding_type': "structure",
'lr': 0.001,
'use_cuda': torch.cuda.is_available(),
'node_vocabulary_dictionary_path': "./data/node_vocab_dict.pkl",
'token_vocabulary_dictionary_path': "./data/token_vocab_dict.pkl",
'max_token_length': 8,
}
def pretty_format(metrics: dict,
metric_headers=('accuracy', 'recall', 'precision', 'f1', 'auc', 'TP', 'FP', 'TN', 'FN')):
return '|'.join(["{}: {}".format(x, metrics[x] if type(metrics[x])==int else round(metrics[x],4)) for x in metric_headers])
def evaluate_metrics(preds, labels):
"""
Get binary score e.g., accuracy, f1, precision and recall
:return:
"""
metrics = dict()
acc = accuracy_score(labels, preds)
recall = recall_score(labels, preds)
prec = precision_score(labels, preds)
auc = roc_auc_score(labels, preds)
f1 = f1_score(labels, preds)
metrics['accuracy'] = acc
metrics['recall'] = recall
metrics['precision'] = prec
metrics['f1'] = f1
metrics['auc'] = auc
TP, FP, TN, FN, i = 0, 0, 0, 0, 0
for i in range(len(preds)):
if preds[i] == 1 and labels[i] == 1:
TP += 1
elif preds[i] == 1 and labels[i] == 0:
FP += 1
elif preds[i] == 0 and labels[i] == 0:
TN += 1
elif preds[i] == 0 and labels[i] == 1:
FN += 1
metrics['TP'], metrics['FP'], metrics['TN'], metrics['FN'] = TP, FP, TN, FN
return metrics
if __name__ == '__main__':
model_save_path = "./trained_models/model.pth"
train_data_file_path = "./train"
val_data_file_path = "./val"
train_dataset = TreeDataset(dir=train_data_file_path)
train_dataloader = DataLoader(dataset=train_dataset, batch_size=config['batch_size'], shuffle=True,
collate_fn=collate)
val_dataset = TreeDataset(dir=val_data_file_path, mode="val")
val_dataloader = DataLoader(dataset=val_dataset, batch_size=config['batch_size'], shuffle=True,
collate_fn=collate)
model = TBCnnModel(config=config)
print("Params:")
for name, parameters in model.named_parameters():
print(name, ':', parameters.size())
print("\n")
if config['use_cuda']:
model = model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'])
# total = sum([param.nelement() for param in model.parameters()])
# print(total)
print("Configuration:")
for c in config:
print("{}:{}".format(c, config[c]))
best_val_acc = 0
for epoch_num in range(config['max_epoch']):
print("-------------------------- epoch {} --------------------------".format(epoch_num + 1))
train_preds_all = []
train_labels_all = []
train_loss_all = []
val_preds_all = []
val_labels_all = []
val_loss_all = []
for idx, batch_dict in enumerate(train_dataloader):
batch_dict = tuple([torch.stack(x, dim=0) for x in batch_dict])
batch_dict = tuple([cuda_utils.to_cuda(x, use_cuda=config['use_cuda']) for x in batch_dict])
model.train()
optimizer.zero_grad()
train_probs, train_loss, train_labels = model(*batch_dict)
train_loss_all.append(train_loss.item())
# print(train_loss)
train_best_preds = np.asarray([np.argmax(line) for line in train_probs.cpu().tolist()])
train_preds_all.extend(train_best_preds)
train_labels_all.extend(train_labels.cpu().tolist())
# backward
train_loss.backward()
optimizer.step()
train_metrics = evaluate_metrics(train_preds_all, train_labels_all)
train_metrics["loss"] = sum(train_loss_all) / len(train_loss_all)
print("train evaluation: ")
print(pretty_format(train_metrics))
for idx, batch_dict in enumerate(val_dataloader):
batch_dict = tuple([torch.stack(x, dim=0) for x in batch_dict])
batch_dict = tuple([cuda_utils.to_cuda(x, use_cuda=config['use_cuda']) for x in batch_dict])
# 关梯度
with torch.no_grad():
model.eval()
val_probs, val_loss, val_labels = model(*batch_dict)
val_loss_all.append(val_loss.item())
val_best_preds = np.asarray([np.argmax(line) for line in val_probs.cpu().tolist()])
val_preds_all.extend(val_best_preds)
val_labels_all.extend(val_labels.cpu().tolist())
val_metrics = evaluate_metrics(val_preds_all, val_labels_all)
val_metrics["loss"] = sum(val_loss_all) / len(val_loss_all)
print("val evaluation: ")
if best_val_acc <= val_metrics['accuracy']:
print("------------------------> best accuracy from {} to {} <------------------------".format(best_val_acc,
val_metrics[
'accuracy']))
best_val_acc = val_metrics['accuracy']
torch.save(model, model_save_path)
print(pretty_format(val_metrics))