-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathAnomaly_Detection.py
568 lines (463 loc) · 18.1 KB
/
Anomaly_Detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
#import metis
import torch
import random
import numpy as np
import networkx as nx
from sklearn.model_selection import train_test_split
import collections
from scipy.stats import sem
from sklearn.metrics import accuracy_score
import sklearn
from ssl_utils import encode_onehot
from sklearn_extra.cluster import KMedoids
#from utils import row_normalize
import numpy as np
import numba
from numba import njit
import os
import time
import scipy
import torch.nn as nn
import scipy.sparse as sp
import torch.nn.functional as F
import numpy as np
import torch
import networkx as nx
from sklearn.cluster import KMeans
import torch.nn as nn
import torch.nn.functional as F
import math
import torch
import torch.optim as optim
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
#from deeprobust.graph import utils
from copy import deepcopy
from sklearn.metrics import f1_score
import os
from input import *
import copy
from random import shuffle
import random
from tqdm import tqdm
from sklearn.metrics import roc_auc_score, average_precision_score,precision_score,recall_score,f1_score
from sklearn.metrics import roc_curve
import matplotlib
from matplotlib import pyplot
import argparse
matplotlib.use("Agg")
class NodeDistance:
def __init__(self, adj,adj_ori, nclass=4):
"""
:param graph: Networkx Graph.
"""
self.adj = adj
self.adj_ori=adj_ori
self.graph = nx.from_scipy_sparse_matrix(adj)
self.nclass = nclass
def get_label(self):
path_length = dict(nx.all_pairs_shortest_path_length(self.graph, cutoff=self.nclass-1))
distance = - np.ones((len(self.graph), len(self.graph))).astype(int)
for u, p in path_length.items():
for v, d in p.items():
distance[u][v] = d
distance[distance==-1] = distance.max() + 1
distance = np.triu(distance)
self.distance = distance
return torch.LongTensor(distance) - 1
def _get_label(self):
'''
group 1,2 into the same category, 3, 4, 5 separately
designed for 2-layer GCN
'''
path_length = dict(nx.all_pairs_shortest_path_length(self.graph))
distance = - np.ones((len(self.graph), len(self.graph))).astype(int)
for u, p in path_length.items():
for v, d in p.items():
distance[u][v] = d
distance[distance==-1] = distance.max() + 1
# group 1, 2 in to one category
distance = np.triu(distance)
#distance[distance==1] = 2
self.distance = distance - 1
return torch.LongTensor(distance) - 2
def sample(self, labels, ratio=0.1):
# first sample k nodes
# candidates = self.all
candidates = np.arange(len(self.graph))
perm = np.random.choice(candidates, int(ratio*len(candidates)), replace=False)
# then sample k other nodes to make sure class balance
node_pairs = []
for i in range(1, labels.max()+1):
tmp = np.array(np.where(labels==i)).transpose()
indices = np.random.choice(np.arange(len(tmp)), 10, replace=False)
node_pairs.append(tmp[indices])
node_pairs = np.array(node_pairs).reshape(-1, 2).transpose()
return node_pairs[0], node_pairs[1]
class Base:
def __init__(self, adj, features, device):
self.adj = adj
self.features = features.to(device)
self.device = device
self.cached_adj_norm = None
def get_adj_norm(self):
if self.cached_adj_norm is None:
adj_norm = preprocess_adj(self.adj, self.device)
self.cached_adj_norm= adj_norm
return self.cached_adj_norm
def make_loss(self, embeddings):
return 0
def transform_data(self):
return self.get_adj_norm(), self.features
class PairwiseDistance(Base):
def __init__(self, adj,adj_ori, features, nhid, device, regression=False):
self.adj = adj
self.adj_ori=adj_ori
self.features = features.to(device)
self.nfeat = features.shape[1]
self.cached_adj_norm = None
self.device = device
#self.labeled = idx_train.cpu().numpy()
self.all = np.arange(adj.shape[0])
#self.unlabeled = np.array([n for n in self.all if n not in idx_train])
self.regression = regression
self.nclass = args.C
self.classifier=nn.Sequential(
nn.Linear(nhid,nhid*2),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(nhid*2,self.nclass),
).to(device)
self.pseudo_labels = None
self.adj_csc=sp.csc_matrix(self.adj_ori)
self.adj_csc.eliminate_zeros()
self.adj_coo=self.adj_csc.tocoo()
self.row=np.array(self.adj_coo.row)
self.col=np.array(self.adj_coo.col)
def transform_data(self):
return self.get_adj_norm(), self.features
def make_loss(self, embeddings):
if self.regression:
return self.regression_loss(embeddings)
else:
return self.classification_loss(embeddings)
def evaluate(self,embeddings,labels):
embeddings0=embeddings[self.row]
embeddings1=embeddings[self.col]
#concat=torch.cat([embeddings0,embeddings1],dim=1)
concat=torch.abs(embeddings0-embeddings1)
embed=self.classifier(concat)
out=F.softmax(embed,dim=1)
labels1=torch.zeros(out.shape[0]).to(self.device)
out=torch.argmax(out,dim=1)
#temp=np.zeros(self.adj_ori.shape)
temp=sp.coo_matrix((out.detach().cpu().numpy(),(self.row,self.col)),shape=self.adj_ori.shape)
temp=temp.toarray()
temp_sum=np.sum(temp,axis=1)
adj_sum=np.sum(np.array(self.adj_ori),axis=1)
temp_average=temp_sum/(adj_sum+1e-12)
return temp_average,out.detach().cpu().numpy()
def classification_loss(self, embeddings):
if self.pseudo_labels is None:
self.agent = NodeDistance(self.adj, self.adj_ori,nclass=self.nclass)
self.pseudo_labels = self.agent.get_label().to(self.device)
print("max label",torch.max(self.pseudo_labels))
print("min label",torch.min(self.pseudo_labels))
# embeddings = F.dropout(embeddings, 0, training=True)
self.node_pairs = self.sample(self.agent.distance,ratio=args.S)
node_pairs = self.node_pairs
embeddings0 = embeddings[node_pairs[0]]
embeddings1 = embeddings[node_pairs[1]]
#concat=torch.cat([embeddings0,embeddings1],dim=1)
concat=torch.abs(embeddings0-embeddings1)
embeddings = self.classifier(concat)
output = F.softmax(embeddings, dim=1)
loss=nn.CrossEntropyLoss()(embeddings,self.pseudo_labels[node_pairs])
#from metric import accuracy
#temp_l=self.pseudo_labels[node_pairs]
#acc = accuracy(output, self.pseudo_labels[node_pairs])
#acc_1=accuracy(output[temp_l==0],temp_l[temp_l==0])
return loss
def sample(self, labels, ratio=0.1, k=600):
k=1e10
for i in range(1,labels.max()+1):
temp=np.array(np.where(labels==i)).transpose()
if k>len(temp):
k=len(temp)
k=int(k*ratio)
node_pairs = []
for i in range(1, labels.max()+1):
tmp = np.array(np.where(labels==i)).transpose()
indices = np.random.choice(np.arange(len(tmp)), k, replace=False)
node_pairs.append(tmp[indices])
node_pairs = np.array(node_pairs).reshape(-1, 2).transpose()
return node_pairs[0], node_pairs[1]
def preprocess_features_normalize(features):
"""
Row-normalize feature matrix and convert to tuple representation
"""
rowsum = np.array(features.sum(1)) # get sum of each row, [2708, 1]
r_inv = np.power(rowsum, -1).flatten() # 1/rowsum, [2708]
r_inv[np.isinf(r_inv)] = 0. # zero inf data
#r_mat_inv = sp.diags(r_inv) # sparse diagonal matrix, [2708, 2708]
r_mat_inv=np.diag(r_inv)
#features = r_mat_inv.dot(features) # D^-1:[2708, 2708]@X:[2708, 2708]
features=np.matmul(r_mat_inv,features)
return features # [coordinates, data, shape], []
def preprocess_features(features, device):
return features.to(device)
def preprocess_adj(adj, device):
# adj_normalizer = fetch_normalization(normalization)
adj_normalizer = aug_normalized_adjacency
r_adj = adj_normalizer(adj)
r_adj = sparse_mx_to_torch_sparse_tensor(r_adj).float()
r_adj = r_adj.to(device)
return r_adj
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
def aug_normalized_adjacency(adj):
adj = adj + sp.eye(adj.shape[0])
adj = sp.coo_matrix(adj)
row_sum = np.array(adj.sum(1))
d_inv_sqrt = np.power(row_sum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return d_mat_inv_sqrt.dot(adj).dot(d_mat_inv_sqrt).tocoo()
class GraphConvolution(Module):
"""Simple GCN layer, similar to https://github.com/tkipf/pygcn
"""
def __init__(self, in_features, out_features, with_bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if with_bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
# self.weight.data.fill_(1)
# if self.bias is not None:
# self.bias.data.fill_(1)
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
""" Graph Convolutional Layer forward function
"""
if input.data.is_sparse:
support = torch.spmm(input, self.weight)
else:
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'
class GCN(nn.Module):
""" 2 Layer Graph Convolutional Network.
Parameter
"""
def __init__(self, nfeat, nhid, dropout=0.5, lr=0.01, weight_decay=5e-4, with_relu=True, with_bias=True, device=None):
super(GCN, self).__init__()
global filename
assert device is not None, "Please specify 'device'!"
self.device = device
self.nfeat = nfeat
self.hidden_sizes = [nhid]
if filename=="Enron" :
self.n_layers=3
elif filename=="Amazon":
self.n_layers=3
elif filename=="ACM":
self.n_layers=1
else:
self.n_layers=1
self.convlist=nn.ModuleList()
self.convlist.append(GraphConvolution(nfeat, nhid, with_bias=with_bias))
for i in range(self.n_layers):
self.convlist.append(GraphConvolution(nhid, nhid, with_bias=with_bias))
self.dropout = dropout
self.lr = lr
if not with_relu:
self.weight_decay = 0
else:
self.weight_decay = weight_decay
self.with_relu = with_relu
self.with_bias = with_bias
self.output = None
self.best_model = None
self.best_output = None
self.adj_norm = None
self.features = None
def forward(self, x, adj):
for i in range(self.n_layers):
x = F.relu(self.convlist[i](x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = self.convlist[-1](x, adj)
return x
def initialize(self):
"""Initialize parameters of GCN.
"""
for i in range(self.n_layers+1):
self.convlist[i].reset_parameters()
#drop edge ---------------------------------------------------
def drop_dissimilar_edges1(features, adj,ratio=0.05,binary=False):
"""Drop dissimilar edges.
"""
adj1=copy.deepcopy(adj)
if not sp.issparse(adj):
adj1 = sp.csr_matrix(adj)
modified_adj = adj1.copy().tolil()
# preprocessing based on features
if binary:
feature=sp.csc_matrix(features)
print('=== GCN-Jaccrad ===')
# isSparse = sp.issparse(features)
edges = np.array(modified_adj.nonzero()).T
removed_cnt = 0
temp_mask=np.zeros(modified_adj.shape)
all_results=[]
for edge in tqdm(edges):
n1 = edge[0]
n2 = edge[1]
if n1 > n2:
continue
if binary:
C=jaccard_similarity(feature[n1],feature[n2])
else:
C = cosine_similarity(features[n1], features[n2])
all_results.append(C)
temp_mask[n1,n2]=C
temp_mask[n2,n1]=C
n=int(len(all_results)*ratio)
removed_cnt=n
simi_ordered=np.sort(all_results)
threshold=simi_ordered[n]
modified_adj[temp_mask<=threshold]=0
print('removed %s edges in the original graph' % removed_cnt)
return modified_adj
dtype = torch.cuda.FloatTensor
learning_rate=0.001
param_noise_sigma = 1
def add_noise(model):
for n in [x for x in model.parameters() if len(x.shape)==2]:
noise = torch.randn(n.size())*param_noise_sigma*learning_rate
noise = noise.type(dtype)
n.data = n.data + noise
def jaccard_similarity( a, b):
intersection = a.multiply(b).count_nonzero()
J = intersection * 1.0 / (a.count_nonzero() + b.count_nonzero() - intersection)
return J
def cosine_similarity( a, b):
#inner_product = (a * b).sum()
#C = inner_product / np.sqrt(np.square(a).sum() + np.square(b).sum())
C=np.exp(-1*np.sqrt(np.square(a-b).sum())/10000)
return C
#drop edge-----------------------------------------------------------------------
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--C', default=3, type=float)
parser.add_argument('--R', default=0.2, type=float)
parser.add_argument('--S', default=0.2, type=float)
parser.add_argument('--filename', default='Amazon', choices=['Enron','Amazon','Disney','BlogCatalog','Flickr','ACM'])
return parser.parse_args()
args = get_args()
device=torch.device("cuda")
weight_decay=5e-8
filename=args.filename
from sklearn.decomposition import PCA
if __name__=="__main__":
if filename=="Enron" or filename=="Amazon" or filename=="Disney":
adj,features,labels=load_data("./data/"+filename+".mat")
all_epoch=100
elif filename=="BlogCatalog" or filename=="Flickr" or filename=="ACM":
data=scipy.io.loadmat("./"+filename+"_anomaly_best.mat")
if filename=="ACM":
data=scipy.io.loadmat("./"+filename+"_anomaly_best_test.mat")
adj_sparse=data["adj"]
adj=adj_sparse.todense()
features=data["X"]
labels=data["labels"]
#print("features shape",features.shape)
else:
adj_sparse=data["adj"]
adj=adj_sparse.todense()
features=data["X"]
labels=data["labels"]
print("features shape",features.shape)
all_epoch=100
else:
print("wrong!")
if filename=="Amazon":
features=preprocess_features_normalize(features)
hiden_dim=128
all_epoch=300
else:
hiden_dim=128
print(filename,"ration:",args.R)
adj_cleaned=drop_dissimilar_edges1(features,adj,ratio=args.R,binary=False) #sparse lil
feat_dim=features.shape[1]
net1=GCN(feat_dim,hiden_dim,device=device)
net1.to(device)
features=torch.tensor(features).float().to(device)
classifer1=PairwiseDistance(adj_cleaned,adj,features,hiden_dim,device)
#classifer.to(device)
adj_tensor=preprocess_adj(adj,device)
opt1=optim.Adam(list(net1.parameters())+list(classifer1.classifier.parameters()),lr=0.01)
net1.train()
auc=None
auc_un=None
auc_average=[]
variance_results=[]
variance_acc=None
for epoch in range(all_epoch):
#print("epoch",epoch)
net1.train()
classifer1.classifier.train()
embed=net1(features,adj_tensor)
loss1=classifer1.make_loss(embed)
loss=loss1
opt1.zero_grad()
loss.backward()
opt1.step()
if epoch>=40:
net1.train()
classifer1.classifier.train()
embed=net1(features,adj_tensor)
rank1,variance_temp=classifer1.evaluate(embed,labels)
variance_results.append(variance_temp)
auc=rank1
auc_average.append(auc)
if len(variance_results)>10:
#print("shape",np.array(variance_results).shape)
variance_uncertainty=np.std(np.array(variance_results),axis=0)
auc_average_temp=np.average(np.array(auc_average),axis=0)
auc_std_temp=np.std(np.array(auc_average),axis=0)
temp=np.zeros(adj.shape)
temp[adj==1]=variance_uncertainty
temp_sum=np.sum(temp,axis=1)
adj_sum=np.sum(np.array(adj),axis=1)
average_uncertainty=temp_sum/(adj_sum+1e-12)
min_average_temp=np.min(auc_average_temp)
max_average_temp=np.max(auc_average_temp)
min_average_uncertainty=np.min(average_uncertainty)
max_average_uncertainty=np.max(average_uncertainty)
auc_un=auc_average_temp/max_average_temp+average_uncertainty/max_average_uncertainty
auc_un[np.isnan(auc_un)]=0
auc_un[np.isinf(auc_un)]=0
if epoch%20==0:
print("auc 4 HAV",roc_auc_score(labels,auc_un))
print("auc AHP",roc_auc_score(labels,auc_average_temp))