-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
61 lines (49 loc) · 1.99 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, TensorBoard
import argparse
from data_generator import train_data_generator, test_data_generator
from model import edsr
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("TARGET_SIZE", type=int)
parser.add_argument("N_TRAIN_DATA", type=int)
parser.add_argument("N_TEST_DATA", type=int)
parser.add_argument("N_RES_BLOCK", type=int)
parser.add_argument("BATCH_SIZE", type=int)
parser.add_argument("EPOCHS", type=int)
parser.add_argument("SCALE", type=int)
parser.add_argument("SAVE_NAME", type=str)
args = parser.parse_args()
DATA_DIR = "../src/"
FILE_PATH = "./models/" + args.SAVE_NAME
TRAIN_PATH = "DIV2K_train_HR"
TEST_PATH = "DIV2K_valid_HR"
TARGET_SIZE = args.TARGET_SIZE
N_TRAIN_DATA = args.N_TRAIN_DATA
N_TEST_DATA = args.N_TEST_DATA
N_RES_BLOCK = args.N_RES_BLOCK
BATCH_SIZE = args.BATCH_SIZE
EPOCHS = args.EPOCHS
SCALE = args.SCALE
train_data_generator = train_data_generator(
DATA_DIR, TRAIN_PATH, scale=float(SCALE), target_size=(TARGET_SIZE, TARGET_SIZE), batch_size=2
)
test_x, test_y = next(
test_data_generator(DATA_DIR, TEST_PATH, scale=float(SCALE), target_size=(TARGET_SIZE, TARGET_SIZE), batch_size=2, shuffle=False)
)
model = edsr(
scale=SCALE, num_filters=256, num_res_blocks=N_RES_BLOCK, res_block_scaling=0.1
)
model.summary(line_length=150)
lr_decay = ReduceLROnPlateau(
monitor="loss", factor=0.5, patience=10, verbose=1, min_lr=1e-5
)
checkpointer = ModelCheckpoint(FILE_PATH, verbose=1, save_best_only=True)
tensorboard_callback = TensorBoard(log_dir="./logs")
callback_list = [lr_decay, checkpointer, tensorboard_callback]
model.fit(
train_data_generator,
validation_data=(test_x, test_y),
steps_per_epoch=N_TRAIN_DATA // BATCH_SIZE,
epochs=EPOCHS,
callbacks=callback_list,
)