-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathval.py
129 lines (102 loc) · 3.9 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# train.py
#!/usr/bin/env python3
""" valuate network using pytorch
Jiayuan Zhu
"""
import os
import sys
import argparse
from datetime import datetime
from collections import OrderedDict
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import roc_auc_score, accuracy_score,confusion_matrix
import torchvision
import torchvision.transforms as transforms
from skimage import io
from torch.utils.data import DataLoader
#from dataset import *
from torch.autograd import Variable
from PIL import Image
from tensorboardX import SummaryWriter
#from models.discriminatorlayer import discriminator
from dataset import *
from conf import settings
import time
import cfg
from tqdm import tqdm
from torch.utils.data import DataLoader, random_split
from utils import *
import function
import pandas as pd
from models.sam.modeling import EMWeights, EMMeanVariance
args = cfg.parse_args()
if args.dataset == 'refuge' or args.dataset == 'refuge2':
args.data_path = '../dataset'
GPUdevice = torch.device('cuda', args.gpu_device)
net = get_network(args, args.net, use_gpu=args.gpu, gpu_device=GPUdevice, distribution = args.distributed)
net.EM_weights = EMWeights(n_components=16).to(GPUdevice)
net.EM_mean_variance = EMMeanVariance(se_dim = 256, pe_dim = 256, n_components=16).to(GPUdevice)
'''load pretrained model'''
assert args.weights != 0
print(f'=> resuming from {args.weights}')
assert os.path.exists(args.weights)
checkpoint_file = os.path.join(args.weights)
assert os.path.exists(checkpoint_file)
loc = 'cuda:{}'.format(args.gpu_device)
checkpoint = torch.load(checkpoint_file, map_location=loc)
start_epoch = checkpoint['epoch'] - 1
best_tol = checkpoint['best_tol']
state_dict = checkpoint['state_dict']
if args.distributed != 'none':
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
# name = k[7:] # remove `module.`
name = 'module.' + k
new_state_dict[name] = v
# load params
else:
new_state_dict = state_dict
net.load_state_dict(new_state_dict)
# args.path_helper = checkpoint['path_helper']
# logger = create_logger(args.path_helper['log_path'])
# print(f'=> loaded checkpoint {checkpoint_file} (epoch {start_epoch})')
# args.path_helper = set_log_dir('logs', args.exp_name)
# logger = create_logger(args.path_helper['log_path'])
# logger.info(args)
args.path_helper = set_log_dir('logs', args.exp_name)
logger = create_logger(args.path_helper['log_path'])
logger.info(args)
'''segmentation data'''
transform_train = transforms.Compose([
transforms.Resize((args.image_size,args.image_size)),
transforms.ToTensor(),
])
transform_train_seg = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((args.image_size,args.image_size)),
])
transform_test = transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor(),
])
transform_test_seg = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((args.image_size, args.image_size)),
])
if args.dataset == 'REFUGE':
'''REFUGE data'''
refuge_train_dataset = REFUGE(args, args.data_path, transform = transform_train, transform_msk= transform_train_seg, mode = 'Training')
refuge_test_dataset = REFUGE(args, args.data_path, transform = transform_test, transform_msk= transform_test_seg, mode = 'Test')
nice_train_loader = DataLoader(refuge_train_dataset, batch_size=args.b, shuffle=True, num_workers=8, pin_memory=True)
nice_test_loader = DataLoader(refuge_test_dataset, batch_size=args.b, shuffle=False, num_workers=8, pin_memory=True)
'''end'''
'''begain valuation'''
best_acc = 0.0
best_tol = 1e4
net.eval()
tol, (eiou, edice) = function.validation_sam(args, nice_test_loader, start_epoch, net) # you may provide the selected_rater_df_path for fair comparison
logger.info(f'Total score: {tol}, IOU: {eiou}, DICE: {edice} || @ epoch {start_epoch}.')