-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtensorflow_imagenet.py
39 lines (31 loc) · 1.09 KB
/
tensorflow_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import json
import time
import redisai as rai
from ml2rt import load_model, load_script
from skimage import io
from cli import arguments
if arguments.gpu:
device = 'gpu'
else:
device = 'cpu'
con = rai.Client(host=arguments.host, port=arguments.port)
tf_model_path = '../models/tensorflow/imagenet/resnet50.pb'
script_path = '../models/tensorflow/imagenet/data_processing_script.txt'
img_path = '../data/cat.jpg'
class_idx = json.load(open("../data/imagenet_classes.json"))
image = io.imread(img_path)
tf_model = load_model(tf_model_path)
script = load_script(script_path)
out1 = con.modelset(
'imagenet_model', 'tf', device,
inputs=['images'], outputs=['output'], data=tf_model)
out2 = con.scriptset('imagenet_script', device, script)
a = time.time()
con.tensorset('image', image)
out4 = con.scriptrun('imagenet_script', 'pre_process_3ch', 'image', 'temp1')
out5 = con.modelrun('imagenet_model', 'temp1', 'temp2')
out6 = con.scriptrun('imagenet_script', 'post_process', 'temp2', 'out')
final = con.tensorget('out')
ind = final.item()
print(ind, class_idx[str(ind)])
print(time.time() - a)