-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathtrain_dqn.py
46 lines (37 loc) · 1.12 KB
/
train_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
""""""
import numpy as np
from openrl.configs.config import create_config_parser
from openrl.envs.common import make
from openrl.modules.common import DQNNet as Net
from openrl.runners.common import DQNAgent as Agent
def train():
# 添加读取配置文件的代码
cfg_parser = create_config_parser()
cfg = cfg_parser.parse_args(["--config", "dqn_gridworld.yaml"])
# 创建 环境
env = make("GridWorldEnv", env_num=9)
# 创建 神经网络
net = Net(env, cfg=cfg)
# 初始化训练器
agent = Agent(net)
# 开始训练
agent.train(total_time_steps=10000)
env.close()
return agent
def evaluation(agent):
# 开始测试环境
env = make("GridWorldEnv", env_num=1, asynchronous=True)
agent.set_env(env)
obs, info = env.reset()
done = False
step = 0
while not np.any(done):
# 智能体根据 observation 预测下一个动作
action, _ = agent.act(obs)
obs, r, done, info = env.step(action)
step += 1
print(f"{step}: reward:{np.mean(r)}")
env.close()
if __name__ == "__main__":
agent = train()
evaluation(agent)