-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexperiment.py
446 lines (326 loc) · 17.3 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import numpy as np
from scipy.special import comb
from scipy.stats import nbinom, binom, bernoulli, poisson
import click
from joblib import Parallel, delayed
import json
import multiprocessing as mp
def generate_infected_contacts(N, r, k, rng, N_untraced):
p = r/(k+r)
num_of_infections = nbinom.rvs(n=k, p=1-p, random_state=rng) # Sample from a negative binomial (Refer to numpy documentation reg. 1-p)
while num_of_infections > N + N_untraced:
num_of_infections = nbinom.rvs(n=k, p=1-p, random_state=rng) # Reject if it is larger than N
is_infected = np.full(N + N_untraced, False)
infection_ids = rng.choice(N + N_untraced, size=num_of_infections, replace=False)
is_infected[infection_ids] = True
is_observed_infected = rng.choice(is_infected, size=N, replace=False)
return is_observed_infected
def evaluate_population(lambda_1, lambda_2, se, sp, d, is_infected, groups, rng):
num_of_tests = 0
false_negatives = 0
false_positives = 0
examined = 0
for group_size in groups:
if group_size == 1:
# Individual testing
group_tests = 1
if is_infected[examined]:
if rng.binomial(1, se)==0:
# False negative
group_false_negatives = 1
group_false_positives = 0
else:
group_false_negatives = 0
group_false_positives = 0
else:
if rng.binomial(1, sp)==0:
# False positive
group_false_negatives = 0
group_false_positives = 1
else:
group_false_negatives = 0
group_false_positives = 0
elif group_size > 1:
# Group testing
group_is_infected = is_infected[examined : examined+group_size]
num_of_infected = np.sum(group_is_infected)
if (num_of_infected > 0 and rng.binomial(1, 1-sp+(se+sp-1)*np.power(num_of_infected/group_size, d))==1) or (num_of_infected == 0 and rng.binomial(1, sp)==0):
# Group test positive
group_tests = 1+group_size
group_false_negatives = rng.binomial(num_of_infected, 1-se)
group_false_positives = rng.binomial(group_size-num_of_infected, 1-sp)
else:
# Group test negative
group_tests = 1
group_false_negatives = num_of_infected
group_false_positives = 0
num_of_tests += group_tests
false_negatives += group_false_negatives
false_positives += group_false_positives
examined += group_size
score = num_of_tests + lambda_1 * false_negatives + lambda_2 * false_positives
return score, num_of_tests, false_negatives, false_positives
def compute_q_value(n, r, N, method, k=None):
if method=='negbin':
if n > N:
result = 0
else:
p = r/(k+r)
result = nbinom.pmf(n, k, 1-p)/nbinom.cdf(N, k, 1-p)
elif method=='poisson':
if n > N:
result = 0
else:
result = poisson.pmf(n, r)/poisson.cdf(N, r)
assert result>=0 and result<=1, "Q value out of bounds"
return result
def compute_probs_of_infected_in_traced(r, N, N_untraced, method, k=None):
probs = np.zeros(N+1, dtype=np.longdouble)
for n in range(0, N+1):
for t in range(0, N+N_untraced+1):
probs[n] += (comb(t, n)*comb(N+N_untraced-t, N-n)/comb(N+N_untraced, N)) * compute_q_value(n=t, r=r, N=N+N_untraced, method=method, k=k)
assert probs[n]>=0 and probs[n]<=1, "Not a valid probability"
return probs
def compute_inner_sums(size, N, probs_of_infected_in_traced):
sum_array = np.zeros(N+1, dtype=np.longdouble)
for s in range(0, size+1):
inner_sum = 0
for n in range(s, N+1):
inner_sum += (comb(n, s)*comb(N-n, size-s)/comb(N, size)) * probs_of_infected_in_traced[n]
assert inner_sum>=0 and inner_sum<=1, "Inner sum out of bounds"
sum_array[s] = inner_sum
return sum_array
def compute_num_of_tests(size, se, sp, d, method, inner_sums=None, p_bernoulli=None):
if method=='poisson' or method=='negbin':
if size==1:
result = 1
elif size>1:
double_sum = np.longdouble(0)
for s in range(1, size+1):
double_sum += (sp - (se+sp-1) * np.power(s/size, d)) * inner_sums[s]
assert double_sum>=0 and double_sum<=1, "Double sum out of bounds"
result = 1 + size*(1 - double_sum - sp*inner_sums[0])
elif method=='binomial':
if size==1:
result = 1
elif size>1:
double_sum = np.longdouble(0)
for s in range(1, size+1):
double_sum += (sp - (se+sp-1) * np.power(s/size, d)) * (comb(size, s) * np.power(p_bernoulli, s) * np.power(1-p_bernoulli, size-s))
assert double_sum>=0 and double_sum<=1, "Double sum out of bounds"
result = 1 + size * (1 - double_sum - sp*np.power(1-p_bernoulli, size))
return result
def compute_false_negatives(size, se, sp, d, method, r=None, k=None, N=None, inner_sums=None, p_bernoulli=None):
if method == 'poisson' or method=='negbin':
if size==1:
simple_sum = 0
for n in range(1, N+1):
simple_sum += (n/N) * compute_q_value(n=n, r=r, k=k, N=N, method=method)
result = (1-se)*simple_sum
elif size>1:
double_sum = np.longdouble(0)
for s in range(1, size+1):
double_sum += s * (1 - se + se*(sp - (se+sp-1)*np.power(s/size,d))) * inner_sums[s]
result = double_sum
elif method=='binomial':
if size==1:
result = (1-se) * p_bernoulli
elif size>1:
double_sum = np.longdouble(0)
for s in range(1, size+1):
double_sum += s * (1 - se + se*(sp - (se+sp-1)*np.power(s/size,d))) * (comb(size, s) * np.power(p_bernoulli, s) * np.power(1-p_bernoulli, size-s))
result = double_sum
return result
def compute_false_positives(size, se, sp, d, method, r=None, k=None, N=None, inner_sums=None, p_bernoulli=None):
if method == 'poisson' or method=='negbin':
if size==1:
simple_sum = 0
for n in range(0, N):
simple_sum += ((N-n)/N) * compute_q_value(n=n, r=r, k=k, N=N, method=method)
result = (1-sp)*simple_sum
elif size>1:
double_sum = np.longdouble(0)
for s in range(1, size):
double_sum += (1 - sp + (se+sp-1) * np.power(s/size, d)) * (size-s) * (1-sp) * inner_sums[s]
result = (1-sp)**2 * size * inner_sums[0] + double_sum
elif method == 'binomial':
if size==1:
result = (1-sp) * (1-p_bernoulli)
elif size>1:
double_sum = np.longdouble(0)
for s in range(1, size):
double_sum += (1 - sp + (se+sp-1) * np.power(s/size, d)) * (size-s) * (1-sp) * (comb(size, s) * np.power(p_bernoulli, s) * np.power(1-p_bernoulli, size-s))
result = (1-sp)**2 * size * np.power(1-p_bernoulli, size) + double_sum
return result
# Computes the expected tests, expected false negatives & expected false positives
# for a given group size
def group_score(size, lambda_1, lambda_2, se, sp, d, method, probs_of_infected_in_traced, r=None, k=None, N=None, p_bernoulli=None):
if method == 'negbin' or method == 'poisson':
inner_sums = compute_inner_sums(size=size, N=N, probs_of_infected_in_traced=probs_of_infected_in_traced)
else:
inner_sums = None
expected_false_negatives = compute_false_negatives(size=size, se=se, sp=sp, d=d, r=r, k=k, N=N, inner_sums=inner_sums, p_bernoulli=p_bernoulli, method=method)
expected_false_positives = compute_false_positives(size=size, se=se, sp=sp, d=d, r=r, k=k, N=N, inner_sums=inner_sums, p_bernoulli=p_bernoulli, method=method)
expected_num_of_tests = compute_num_of_tests(size=size, se=se, sp=sp, d=d, inner_sums=inner_sums, p_bernoulli=p_bernoulli, method=method)
score = expected_num_of_tests + lambda_1*expected_false_negatives + lambda_2*expected_false_positives
return score, expected_false_negatives, expected_false_positives, expected_num_of_tests
# Dynamic programming algorithm to split individuals into groups
def testing(lambda_1, lambda_2, se, sp, r, k, d, N, N_untraced, bench, method):
if (method != 'negbin') and (method != 'binomial') and (method != 'poisson'):
print('Unspecified method')
return None
# Precompute the probabilities of having n infected samples in N contacts
if bench:
probs_of_infected_in_traced = compute_probs_of_infected_in_traced(r=r, N=N, N_untraced=N_untraced, method='negbin', k=k)
else:
probs_of_infected_in_traced = compute_probs_of_infected_in_traced(r=r, N=N, N_untraced=0, method='negbin', k=k)
effective_mean = 0
for l in range(0,N+1):
effective_mean += l * probs_of_infected_in_traced[l]
p_bernoulli = effective_mean/N
# Precompute the objective value for all group sizes
g_fun = np.zeros(N)
fn_fun = np.zeros(N)
fp_fun = np.zeros(N)
tests_fun = np.zeros(N)
for size in range(1, N+1):
g_fun[size-1], fn_fun[size-1], fp_fun[size-1], tests_fun[size-1] = \
group_score(size=size, lambda_1=lambda_1, lambda_2=lambda_2,
se=se, sp=sp, d=d, r=r, k=k, N=N, p_bernoulli=p_bernoulli, method=method,
probs_of_infected_in_traced=probs_of_infected_in_traced)
# Dynamic programming
h_fun = np.zeros(N+1)
splittings = np.zeros(N+1, dtype=int)
fn_total = np.zeros(N+1)
fp_total = np.zeros(N+1)
tests_total = np.zeros(N+1)
for i in range(1, N+1):
min_val = np.inf
for j in range(1, i+1):
val = g_fun[j-1] + h_fun[i-j]
if val < min_val:
min_val = val
min_splitting=j
h_fun[i] = min_val
splittings[i] = min_splitting
fn_total[i] = fn_fun[min_splitting-1] + fn_total[i-min_splitting]
fp_total[i] = fp_fun[min_splitting-1] + fp_total[i-min_splitting]
tests_total[i] = tests_fun[min_splitting-1] + tests_total[i-min_splitting]
groups = []
grouped = 0
next_group_id = 0
splittings = np.flip(splittings)
while grouped < N:
next_group_id = splittings[grouped]
groups.append(next_group_id)
grouped += next_group_id
return groups, fn_total[N], fp_total[N], tests_total[N]
# Generates infected contacts, performs testing based on the given group sizes
# and returns the number of tests, false negatives and false positives
def gen_and_eval_fixed(N, r, k, lambda_1, lambda_2, se, sp, d, groups, seed, N_untraced):
rng = np.random.default_rng(seed)
is_infected = generate_infected_contacts(N, r, k, rng, N_untraced)
num_of_infected = np.sum(is_infected)
score, num_of_tests, false_negatives, false_positives = evaluate_population(lambda_1, lambda_2, se, sp, d, is_infected, groups, rng)
return score, num_of_tests, false_negatives, false_positives, num_of_infected
# Saves configuration and results to a JSON file
def generate_summary(lambda_1, lambda_2, se, sp, d, N, untraced, bench, r, k, method, seeds, groups,
exp_fn, exp_fp, exp_tests,
score, num_of_tests, false_negatives, false_positives, num_of_infected):
summary = {}
summary['lambda_1'] = str(lambda_1)
summary['lambda_2'] = str(lambda_2)
summary['se'] = str(se)
summary['sp'] = str(sp)
summary['d'] = str(d)
summary['r'] = str(r)
summary['k'] = str(k)
summary['bench'] = bench
summary['method'] = method
summary['N'] = str(N)
summary['untraced'] = str(untraced)
summary['exp_fn'] = str(exp_fn)
summary['exp_fp'] = str(exp_fp)
summary['exp_tests'] = str(exp_tests)
summary['groups'] = {}
for ind, group_size in enumerate(groups):
summary['groups'][ind+1] = str(group_size)
summary['seeds'] = {}
for seed in range(1, seeds+1):
summary['seeds'][seed] = {}
summary['seeds'][seed]['score'] = str(score[seed-1])
summary['seeds'][seed]['num_of_tests'] = str(num_of_tests[seed-1])
summary['seeds'][seed]['false_negatives'] = str(false_negatives[seed-1])
summary['seeds'][seed]['false_positives'] = str(false_positives[seed-1])
summary['seeds'][seed]['num_of_infected'] = str(num_of_infected[seed-1])
return summary
@click.command() # Comment the click commands for testing
@click.option('--r', type=float, required=True, help="Reproductive rate")
@click.option('--k', type=float, required=True, help="Dispersion")
@click.option('--n', type=int, required=True, help="Number of traced contacts")
@click.option('--untraced', type=float, required=False, default=0.0, help="Percentage of total contacts who are untraced")
@click.option('--bench', is_flag=True, help="Used to benchmark a method with untraced contacts against its ideal performance")
@click.option('--lambda_1', type=float, required=True, help="False Negative weight")
@click.option('--lambda_2', type=float, required=True, help="False Positive weight")
@click.option('--se', type=np.longdouble, required=True, help="Test Sensitivity")
@click.option('--sp', type=np.longdouble, required=True, help="Test Specificity")
@click.option('--d', type=np.longdouble, required=True, help="Dilution")
@click.option('--method', type=str, required=True, help="Grouping method")
@click.option('--seeds', type=int, required=True, help="Number of contacts sets to be tested")
@click.option('--njobs', type=int, required=True, help="Number of parallel threads")
@click.option('--output', type=str, required=True, help="Output file name")
def experiment(r, k, n, untraced, bench, lambda_1, lambda_2, se, sp, d, method, seeds, njobs, output):
N = n # click doesn't accept upper case arguments
N_untraced = int(np.around(untraced*N / (1-untraced)))
if method!='individual':
print('Computing optimal groups under ' + method + ' assumption...')
groups, exp_fn, exp_fp, exp_tests = testing(lambda_1=lambda_1, lambda_2=lambda_2, se=se, sp=sp, r=r, k=k, d=d, N=N, N_untraced=N_untraced, bench=bench, method=method)
else:
print('Computing optimal groups under ' + method + ' assumption...')
groups, exp_fn, exp_fp, exp_tests = (list(np.full(N,1,dtype=int)), None, None, None) # Expected numbers left undefined for individual testing
print('Evaluating...')
results = Parallel(n_jobs=njobs, backend='multiprocessing')(delayed(gen_and_eval_fixed)(N, r, k, lambda_1, lambda_2, se, sp, d, groups, seed, N_untraced) for seed in range(1, seeds+1))
score = [x[0] for x in results]
num_of_tests = [x[1] for x in results]
false_negatives = [x[2] for x in results]
false_positives = [x[3] for x in results]
num_of_infected = [x[4] for x in results]
print('Saving results...')
summary = generate_summary(lambda_1=lambda_1, lambda_2=lambda_2, se=se, sp=sp, d=d, N=n, untraced=untraced, bench=bench, r=r, k=k, method=method,
exp_fn=exp_fn, exp_fp=exp_fp, exp_tests=exp_tests,
score=score, num_of_tests=num_of_tests, false_negatives=false_negatives, false_positives=false_positives,
groups=groups, num_of_infected=num_of_infected, seeds=seeds)
with open('{output}.json'.format(output=output), 'w') as outfile:
json.dump(summary, outfile)
return
# Testing function to compare the q-values of Poisson and Negative Binomial
def testing_q_values(N, r, k):
poisson_q_values = []
negbin_q_values = []
for n in range(0, N+1):
poisson_q_values.append(compute_q_value(n=n, r=r, N=N, method='poisson'))
negbin_q_values.append(compute_q_value(n=n, r=r, k=k, N=N, method='negbin'))
print(poisson_q_values)
print(negbin_q_values)
return
# Testing function to compare the expected number of tests, FNs and FPs of Poisson and Negative Binomial
def testing_exp_values(N, r, k, lambda_1, lambda_2, se, sp, seeds):
results={}
effective_mean = 0
for n in range(0,N+1):
effective_mean += n * compute_q_value(n, r, N, 'negbin', k)
p_bernoulli = effective_mean/N
for method in ['binomial', 'negbin']:
results[method] = (np.zeros(N), np.zeros(N), np.zeros(N), np.zeros(N))
for size in range(1, N+1):
results[method][0][size-1], results[method][1][size-1], results[method][2][size-1], results[method][3][size-1] = \
group_score(size=size, lambda_1=lambda_1, lambda_2=lambda_2,
se=se, sp=sp, r=r, k=k, N=N, p_bernoulli=p_bernoulli, method=method)
print(results)
return
if __name__ == '__main__':
experiment()
# testing_q_values(N=100, r=2.5, k=0.2)
# testing_exp_values(N=100, r=2.5, k=0.2, lambda_1=0.0, lambda_2=0.0, se=0.95, sp=0.95, seeds=100000)
# experiment(r = 2.5, k = 0.1, n = 50, untraced=0.0, bench=False, lambda_1 = 0.0, lambda_2 = 10000.0, se = 0.8, sp = 0.98, d=0.0455,
# method = 'binomial', seeds = 10000, njobs = 1, output = 'outputs/test')