forked from microsoft/Spartan2
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_shape_cs.rs
325 lines (276 loc) · 8.08 KB
/
test_shape_cs.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
//! Support for generating R1CS shape using bellpepper.
//! `TestShapeCS` implements a superset of `ShapeCS`, adding non-trivial namespace support for use in testing.
use std::{
cmp::Ordering,
collections::{BTreeMap, HashMap},
};
use crate::traits::Group;
use bellpepper_core::{ConstraintSystem, Index, LinearCombination, SynthesisError, Variable};
use core::fmt::Write;
use ff::{Field, PrimeField};
#[derive(Clone, Copy)]
struct OrderedVariable(Variable);
#[derive(Debug)]
enum NamedObject {
Constraint,
Var,
Namespace,
}
impl Eq for OrderedVariable {}
impl PartialEq for OrderedVariable {
fn eq(&self, other: &OrderedVariable) -> bool {
match (self.0.get_unchecked(), other.0.get_unchecked()) {
(Index::Input(ref a), Index::Input(ref b)) | (Index::Aux(ref a), Index::Aux(ref b)) => a == b,
_ => false,
}
}
}
impl PartialOrd for OrderedVariable {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for OrderedVariable {
fn cmp(&self, other: &Self) -> Ordering {
match (self.0.get_unchecked(), other.0.get_unchecked()) {
(Index::Input(ref a), Index::Input(ref b)) | (Index::Aux(ref a), Index::Aux(ref b)) => {
a.cmp(b)
}
(Index::Input(_), Index::Aux(_)) => Ordering::Less,
(Index::Aux(_), Index::Input(_)) => Ordering::Greater,
}
}
}
#[allow(clippy::upper_case_acronyms)]
/// `TestShapeCS` is a `ConstraintSystem` for creating `R1CSShape`s for a circuit.
pub struct TestShapeCS<G: Group>
where
G::Scalar: PrimeField + Field,
{
named_objects: HashMap<String, NamedObject>,
current_namespace: Vec<String>,
#[allow(clippy::type_complexity)]
/// All constraints added to the `TestShapeCS`.
pub constraints: Vec<(
LinearCombination<G::Scalar>,
LinearCombination<G::Scalar>,
LinearCombination<G::Scalar>,
String,
)>,
inputs: Vec<String>,
aux: Vec<String>,
}
fn proc_lc<Scalar: PrimeField>(
terms: &LinearCombination<Scalar>,
) -> BTreeMap<OrderedVariable, Scalar> {
let mut map = BTreeMap::new();
for (var, &coeff) in terms.iter() {
map
.entry(OrderedVariable(var))
.or_insert_with(|| Scalar::ZERO)
.add_assign(&coeff);
}
// Remove terms that have a zero coefficient to normalize
let mut to_remove = vec![];
for (var, coeff) in map.iter() {
if coeff.is_zero().into() {
to_remove.push(*var)
}
}
for var in to_remove {
map.remove(&var);
}
map
}
impl<G: Group> TestShapeCS<G>
where
G::Scalar: PrimeField,
{
#[allow(unused)]
/// Create a new, default `TestShapeCS`,
pub fn new() -> Self {
TestShapeCS::default()
}
/// Returns the number of constraints defined for this `TestShapeCS`.
pub fn num_constraints(&self) -> usize {
self.constraints.len()
}
/// Returns the number of inputs defined for this `TestShapeCS`.
pub fn num_inputs(&self) -> usize {
self.inputs.len()
}
/// Returns the number of aux inputs defined for this `TestShapeCS`.
pub fn num_aux(&self) -> usize {
self.aux.len()
}
/// Print all public inputs, aux inputs, and constraint names.
#[allow(dead_code)]
pub fn pretty_print_list(&self) -> Vec<String> {
let mut result = Vec::new();
for input in &self.inputs {
result.push(format!("INPUT {input}"));
}
for aux in &self.aux {
result.push(format!("AUX {aux}"));
}
for (_a, _b, _c, name) in &self.constraints {
result.push(name.to_string());
}
result
}
/// Print all iputs and a detailed representation of each constraint.
#[allow(dead_code)]
pub fn pretty_print(&self) -> String {
let mut s = String::new();
for input in &self.inputs {
writeln!(s, "INPUT {}", &input).unwrap()
}
let negone = -<G::Scalar>::ONE;
let powers_of_two = (0..G::Scalar::NUM_BITS)
.map(|i| G::Scalar::from(2u64).pow_vartime([u64::from(i)]))
.collect::<Vec<_>>();
let pp = |s: &mut String, lc: &LinearCombination<G::Scalar>| {
s.push('(');
let mut is_first = true;
for (var, coeff) in proc_lc::<G::Scalar>(lc) {
if coeff == negone {
s.push_str(" - ")
} else if !is_first {
s.push_str(" + ")
}
is_first = false;
if coeff != <G::Scalar>::ONE && coeff != negone {
for (i, x) in powers_of_two.iter().enumerate() {
if x == &coeff {
write!(s, "2^{i} . ").unwrap();
break;
}
}
write!(s, "{coeff:?} . ").unwrap()
}
match var.0.get_unchecked() {
Index::Input(i) => {
write!(s, "`I{}`", &self.inputs[i]).unwrap();
}
Index::Aux(i) => {
write!(s, "`A{}`", &self.aux[i]).unwrap();
}
}
}
if is_first {
// Nothing was visited, print 0.
s.push('0');
}
s.push(')');
};
for (a, b, c, name) in &self.constraints {
s.push('\n');
write!(s, "{name}: ").unwrap();
pp(&mut s, a);
write!(s, " * ").unwrap();
pp(&mut s, b);
s.push_str(" = ");
pp(&mut s, c);
}
s.push('\n');
s
}
/// Associate `NamedObject` with `path`.
/// `path` must not already have an associated object.
fn set_named_obj(&mut self, path: String, to: NamedObject) {
assert!(
!self.named_objects.contains_key(&path),
"tried to create object at existing path: {path}"
);
self.named_objects.insert(path, to);
}
}
impl<G: Group> Default for TestShapeCS<G>
where
G::Scalar: PrimeField,
{
fn default() -> Self {
let mut map = HashMap::new();
map.insert("ONE".into(), NamedObject::Var);
TestShapeCS {
named_objects: map,
current_namespace: vec![],
constraints: vec![],
inputs: vec![String::from("ONE")],
aux: vec![],
}
}
}
impl<G: Group> ConstraintSystem<G::Scalar> for TestShapeCS<G>
where
G::Scalar: PrimeField,
{
type Root = Self;
fn alloc<F, A, AR>(&mut self, annotation: A, _f: F) -> Result<Variable, SynthesisError>
where
F: FnOnce() -> Result<G::Scalar, SynthesisError>,
A: FnOnce() -> AR,
AR: Into<String>,
{
let path = compute_path(&self.current_namespace, &annotation().into());
self.aux.push(path);
Ok(Variable::new_unchecked(Index::Aux(self.aux.len() - 1)))
}
fn alloc_input<F, A, AR>(&mut self, annotation: A, _f: F) -> Result<Variable, SynthesisError>
where
F: FnOnce() -> Result<G::Scalar, SynthesisError>,
A: FnOnce() -> AR,
AR: Into<String>,
{
let path = compute_path(&self.current_namespace, &annotation().into());
self.inputs.push(path);
Ok(Variable::new_unchecked(Index::Input(self.inputs.len() - 1)))
}
fn enforce<A, AR, LA, LB, LC>(&mut self, annotation: A, a: LA, b: LB, c: LC)
where
A: FnOnce() -> AR,
AR: Into<String>,
LA: FnOnce(LinearCombination<G::Scalar>) -> LinearCombination<G::Scalar>,
LB: FnOnce(LinearCombination<G::Scalar>) -> LinearCombination<G::Scalar>,
LC: FnOnce(LinearCombination<G::Scalar>) -> LinearCombination<G::Scalar>,
{
let path = compute_path(&self.current_namespace, &annotation().into());
self.set_named_obj(path.clone(), NamedObject::Constraint);
let a = a(LinearCombination::zero());
let b = b(LinearCombination::zero());
let c = c(LinearCombination::zero());
self.constraints.push((a, b, c, path));
}
fn push_namespace<NR, N>(&mut self, name_fn: N)
where
NR: Into<String>,
N: FnOnce() -> NR,
{
let name = name_fn().into();
let path = compute_path(&self.current_namespace, &name);
self.set_named_obj(path, NamedObject::Namespace);
self.current_namespace.push(name);
}
fn pop_namespace(&mut self) {
assert!(self.current_namespace.pop().is_some());
}
fn get_root(&mut self) -> &mut Self::Root {
self
}
}
fn compute_path(ns: &[String], this: &str) -> String {
assert!(
!this.chars().any(|a| a == '/'),
"'/' is not allowed in names"
);
let mut name = String::new();
let mut needs_separation = false;
for ns in ns.iter().chain(Some(this.to_string()).iter()) {
if needs_separation {
name += "/";
}
name += ns;
needs_separation = true;
}
name
}