-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
264 lines (202 loc) · 9.15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import h5py
import pandas as pd
from pandas import *
import numpy as np
import matplotlib.pyplot as plt
from collections import OrderedDict
import torch
from torch import nn
from torch import optim
from torch.optim import lr_scheduler
from torch.nn import functional as F
from torchvision import datasets, models, transforms
from torch.utils import data
from torch.utils.data import DataLoader, random_split
from torch.utils.data.sampler import SubsetRandomSampler
import torchvision
import random
import shutil
from sklearn.model_selection import train_test_split
import numpy as np
import numpy
import os
from dataset import CreateDataset, normalize, denormalize
test_tran_dataset = CreateDataset(path= r"/media/ram/338f6363-03b7-4ad7-a2be-40c31f59dee4/20230418_backup/ram/Students/B.Tech_2020/Madhav/mtnn/Datasets/NitrUAVCorridorV1/Translation(Angle))/TestTranslation(Angle).h5", phase= 'test', mode= "tran")
test_rot_dataset = CreateDataset(path= r"/media/ram/338f6363-03b7-4ad7-a2be-40c31f59dee4/20230418_backup/ram/Students/B.Tech_2020/Madhav/mtnn/Datasets/NitrUAVCorridorV1/Rotation(Distance)/TestRotation(Distance).h5", phase= 'test', mode="rot")
test_tran_loader = data.DataLoader(test_tran_dataset, batch_size=1)
test_rot_loader = data.DataLoader(test_rot_dataset, batch_size=1)
train_tran_dataset = CreateDataset(path= r"/media/ram/338f6363-03b7-4ad7-a2be-40c31f59dee4/20230418_backup/ram/Students/B.Tech_2020/Madhav/mtnn/Datasets/NitrUAVCorridorV1/Translation(Angle))/TrainTranslation(Angle).h5", phase= 'train', mode="tran")
train_rot_dataset = CreateDataset(path= r"/media/ram/338f6363-03b7-4ad7-a2be-40c31f59dee4/20230418_backup/ram/Students/B.Tech_2020/Madhav/mtnn/Datasets/NitrUAVCorridorV1/Rotation(Distance)/TrainRotation(Distance).h5", phase= 'train', mode="rot")
train_tran_loader = data.DataLoader(train_tran_dataset, batch_size=20)
train_rot_loader = data.DataLoader(train_rot_dataset, batch_size=20)
densenet_model = models.densenet161(pretrained=True)
num_features = densenet_model.classifier.in_features
task1 = nn.Linear(num_features, 1)
task2 = nn.Linear(num_features, 1)
densenet_model.classifier.add_module('task1', task1)
densenet_model.classifier.add_module('task2', task2)
criterion = nn.L1Loss()
optimizer = optim.Adam(densenet_model.classifier.parameters(), lr=0.0001)
def train(epochs):
all_training_loss = []
epochs_list = []
if torch.cuda.is_available():
densenet_model.cuda()
else:
densenet_model.cpu()
for epoch in range(epochs):
epochs_list.append(epoch)
print(f"Epoch-{epoch+1} | \t", end="")
training_loss = 0
for (image1, label1), (image2, label2) in zip(train_tran_loader, train_rot_loader):
if torch.cuda.is_available():
image1, image2, label1, label2 = image1.cuda(), image2.cuda(), label1.cuda(), label2.cuda()
image1 = image1.clone().detach()
image2 = image2.clone().detach()
label2 = normalize(label2)
optimizer.zero_grad()
features1 = densenet_model.features(image1.float())
features1 = nn.functional.relu(features1, inplace=True)
features1 = nn.functional.adaptive_avg_pool2d(features1, (1, 1))
features1 = torch.flatten(features1, 1)
output_1 = task1(features1)
features2 = densenet_model.features(image2.float())
features2 = nn.functional.relu(features2, inplace=True)
features2 = nn.functional.adaptive_avg_pool2d(features2, (1, 1))
features2 = torch.flatten(features2, 1)
output_2 = task2(features2)
loss1 = criterion(output_1.view(-1), label1.view(-1))
loss2 = criterion(output_2.view(-1), label2.view(-1))
loss = loss1 + loss2
loss.backward()
training_loss += loss.item()
optimizer.step()
else:
densenet_model.eval()
total_train_length = len(train_tran_loader) + len(train_rot_loader)
some_log = f"Training loss: {training_loss/total_train_length:.4f}"
print(some_log)
all_training_loss.append(training_loss/total_train_length)
densenet_model.train()
os.makedirs("Output", exist_ok=True)
torch.save(densenet_model.state_dict(),os.path.join("Output", f"densenet_{epoch}.pth"))
print(f"Model saved as densenet_{epoch}.pth")
def training_plot():
# Loss values and epochs
loss_values = []
epochs = list(range(1, len(loss_values) + 1))
# Plotting
plt.figure(figsize=(10, 6))
plt.plot(epochs, loss_values, linestyle='-')
plt.title('Training Loss over Epochs')
plt.xlabel('Epoch')
plt.ylabel('Training Loss')
# plt.grid(True)
plt.show()
def test():
import torch.nn as nn
import torchvision.models as models
densenet_model = models.densenet161(pretrained=True)
num_features = densenet_model.classifier.in_features
task1 = nn.Linear(num_features, 1)
task2 = nn.Linear(num_features, 1)
densenet_model.classifier.add_module('task1', task1)
densenet_model.classifier.add_module('task2', task2)
checkpoint = torch.load("/content/drive/MyDrive/densenet_99.pth", map_location=torch.device('cpu'))
densenet_model.load_state_dict(checkpoint)
#Testing
criterion1 = nn.L1Loss()
criterion2 = nn.MSELoss()
densenet_model.eval()
cuda = torch.cuda.is_available()
if cuda:
densenet_model.cuda()
else:
densenet_model.cpu()
angle_tolerance_deg = 5
rotation_tolerance = angle_tolerance_deg * (3.14159 / 180)
distance_tolerance = 0.15
dist_correct = 0
rot_correct = 0
tran_loss1 = []
tran_loss2 = []
rot_loss1 = []
rot_loss2 = []
for image1, label1 in test_tran_loader:
with torch.no_grad():
if cuda:
image1, label1= image1.cuda(), label1.cuda()
image1 = image1.float()
features1 = densenet_model.features(image1.float())
features1 = nn.functional.relu(features1, inplace=True)
features1 = nn.functional.adaptive_avg_pool2d(features1, (1, 1))
features1 = torch.flatten(features1, 1)
output1 = task1(features1)
loss1 = criterion1(output1.view(-1), label1.view(-1))
loss2 = criterion2(output1.view(-1), label1.view(-1))
dist_mae += loss1.item()
dist_mse += loss2.item()
output1 = denormalize(output1)
label1 = denormalize(label1)
tran_loss1.append(loss1.item())
tran_loss2.append(loss2.item())
dist_diff = torch.abs(output1 - label1)
dist_correct += torch.sum(dist_diff <= distance_tolerance).item()
for image2, label2 in test_rot_loader:
label2 = normalize(label2)
with torch.no_grad():
if cuda:
image2, label2 = image2.cuda(), label2.cuda()
image2 = image2.float()
features2 = densenet_model.features(image2.float())
features2 = nn.functional.relu(features2, inplace=True)
features2 = nn.functional.adaptive_avg_pool2d(features2, (1, 1))
features2 = torch.flatten(features2, 1)
output2 = task2(features2)
loss3 = criterion1(output2.view(-1), label2.view(-1))
loss4 = criterion2(output2.view(-1), label2.view(-1))
ang_mae += loss3.item()
ang_mse += loss4.item()
output2 = denormalize(output2)
label2 = denormalize(label2)
rot_loss1.append(loss3.item())
rot_loss2.append(loss4.item())
rot_diff = torch.abs(output2 - label2)
rot_correct += torch.sum(rot_diff <= rotation_tolerance).item()
# Calculate accuracy
dist_accuracy = dist_correct / len(test_tran_loader)
rot_accuracy = rot_correct / len(test_rot_loader)
total_correct = dist_correct + rot_correct
total_accuracy = total_correct / total_len
# Display accuracy
print("\nDistance Accuracy:", dist_accuracy)
print("Rotation Accuracy:", rot_accuracy)
print("Total Accuracy:", total_accuracy)
def training_plot(training_loss):
epochs = list(range(1, len(tran_loss1) + 1))
# Plotting
plt.figure(figsize=(10, 6))
plt.plot(epochs, tran_loss1, linestyle='-')
plt.plot(epochs, tran_loss2)
plt.title('Testing Loss over Epochs')
plt.xlabel('Epoch')
plt.ylabel('Testing Loss')
plt.legend(True)
# plt.grid(True)
plt.show()
plt.clf()
epochs = list(range(1, len(rot_loss1) + 1))
# Plotting
plt.figure(figsize=(10, 6))
plt.plot(epochs, rot_loss1, linestyle='-')
plt.plot(epochs, rot_loss2)
plt.title('Testing Loss over Epochs')
plt.xlabel('Epoch')
plt.ylabel('Testing Loss')
plt.legend(True)
# plt.grid(True)
plt.show()
def __main__():
training_loss = train(100)
training_plot(training_loss)
test()