-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
95 lines (72 loc) · 3.65 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import torch
import os
import torch.nn as nn
from forward_process import *
from dataset import *
from diffusers import AutoencoderKL
from torch.optim import Adam
from dataset import *
from noise import *
from visualize import show_tensor_image
from test import *
from loss import *
from optimizer import *
from sample import *
def trainer(model, constants_dict, ema_helper, config):
optimizer = build_optimizer(model, config)
if config.data.name == 'MVTec' or config.data.name == 'BTAD' or config.data.name == 'MTD' or config.data.name =='VisA':
train_dataset = MVTecDataset(
root= config.data.data_dir,
category=config.data.category,
config = config,
is_train=True,
)
trainloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=config.data.batch_size,
shuffle=True,
num_workers=config.model.num_workers,
drop_last=True,
)
if config.data.name == 'cifar10':
trainloader, testloader = load_data(dataset_name='cifar10')
if config.model.latent:
if config.model.latent_backbone == "VAE":
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
vae.to(config.model.device)
vae.eval()
else:
print(f"error: backbone needs to be VAE")
for epoch in range(config.model.epochs):
for step, batch in enumerate(trainloader):
t = torch.randint(0, config.model.trajectory_steps, (batch[0].shape[0],), device=config.model.device).long()
optimizer.zero_grad()
if config.model.latent:
if config.model.latent_backbone == "VAE":
features = vae.encode(batch[0].to(config.model.device)).latent_dist.sample() * 0.18215
else:
print(f"error: backbone needs to be VAE")
loss = get_loss(model, constants_dict, features, t, config)
else:
loss = get_loss(model, constants_dict, batch[0], t, config)
loss.backward()
optimizer.step()
if epoch % 3 == 0 and step == 0:
print(f"Epoch {epoch} | Loss: {loss.item()}")
if epoch % 25 == 0 and step ==0:
if config.model.save_model:
if config.data.category:
model_save_dir = os.path.join(os.getcwd(), config.model.checkpoint_dir, config.data.category)
else:
model_save_dir = os.path.join(os.getcwd(), config.model.checkpoint_dir)
if not os.path.exists(model_save_dir):
os.mkdir(model_save_dir)
torch.save(model.state_dict(), os.path.join(model_save_dir, f"{config.model.latent_size}_{config.model.unet_channel}_{config.model.n_head}_{config.model.head_channel}_diffusers_unet_{str(epoch)}")) #config.model.checkpoint_name
if config.model.save_model:
if config.data.category:
model_save_dir = os.path.join(os.getcwd(), config.model.checkpoint_dir, config.data.category)
else:
model_save_dir = os.path.join(os.getcwd(), config.model.checkpoint_dir)
if not os.path.exists(model_save_dir):
os.mkdir(model_save_dir)
torch.save(model.state_dict(), os.path.join(model_save_dir, f"{config.model.latent_size}_{config.model.unet_channel}_{config.model.n_head}_{config.model.head_channel}_diffusers_unet_{str(epoch)}")) #config.model.checkpoint_name