-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpcdseg.py
239 lines (188 loc) · 8.49 KB
/
pcdseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import open3d
import argparse
import os
import time
import json
import h5py
import datetime
import cv2
import numpy as np
import pandas as pd
import torch
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.nn as nn
from tqdm import tqdm
from matplotlib import pyplot as plt
import my_log as log
from model.pointnet import PointNetSeg, feature_transform_reguliarzer
from model.pointnet2 import PointNet2SemSeg
from model.utils import load_pointnet
from pcd_utils import mkdir, select_avaliable
from data_utils.SemKITTI_Loader import SemKITTI_Loader
from data_utils.kitti_utils import Semantic_KITTI_Utils
KITTI_ROOT = os.environ['KITTI_ROOT']
def parse_args(notebook = False):
parser = argparse.ArgumentParser('PointNet')
parser.add_argument('--mode', default='train', choices=('train', 'eval'))
parser.add_argument('--model_name', type=str, default='pointnet', choices=('pointnet', 'pointnet2'))
parser.add_argument('--pn2', default=False, action='store_true')
parser.add_argument('--batch_size', type=int, default=8, help='input batch size')
parser.add_argument('--subset', type=str, default='inview', choices=('inview', 'all'))
parser.add_argument('--workers', type=int, default=4, help='number of data loading workers')
parser.add_argument('--epoch', type=int, default=100, help='number of epochs for training')
parser.add_argument('--pretrain', type=str, default=None, help='whether use pretrain model')
parser.add_argument('--gpu', type=str, default='0', help='specify gpu device')
parser.add_argument('--learning_rate', type=float, default=0.001, help='learning rate for training')
parser.add_argument('--optimizer', type=str, default='Adam', help='type of optimizer')
parser.add_argument('--augment', default=False, action='store_true', help="Enable data augmentation")
if notebook:
args = parser.parse_args([])
else:
args = parser.parse_args()
if args.pn2 == False:
args.model_name = 'pointnet'
else:
args.model_name = 'pointnet2'
return args
def calc_decay(init_lr, epoch):
return init_lr * 1/(1 + 0.03*epoch)
def test_kitti_semseg(model, loader, model_name, num_classes, class_names):
ious = np.zeros((num_classes,), dtype = np.float32)
count = np.zeros((num_classes,), dtype = np.uint32)
count[0] = 1
accuracy = []
for points, target in tqdm(loader, total=len(loader), smoothing=0.9, dynamic_ncols=True):
batch_size, num_point, _ = points.size()
points = points.float().transpose(2, 1).cuda()
target = target.long().cuda()
with torch.no_grad():
if model_name == 'pointnet':
pred, _ = model(points)
else:
pred = model(points)
pred_choice = pred.argmax(-1)
target = target.squeeze(-1)
for class_id in range(num_classes):
I = torch.sum((pred_choice == class_id) & (target == class_id)).cpu().item()
U = torch.sum((pred_choice == class_id) | (target == class_id)).cpu().item()
iou = 1 if U == 0 else I/U
ious[class_id] += iou
count[class_id] += 1
correct = (pred_choice == target).sum().cpu().item()
accuracy.append(correct/ (batch_size * num_point))
categorical_iou = ious / count
df = pd.DataFrame(categorical_iou, columns=['mIOU'], index=class_names)
df = df.sort_values(by='mIOU', ascending=False)
log.info('categorical mIOU')
log.msg(df)
acc = np.mean(accuracy)
miou = np.mean(categorical_iou[1:])
return acc, miou
def train(args):
experiment_dir = mkdir('experiment/')
checkpoints_dir = mkdir('experiment/%s/'%(args.model_name))
kitti_utils = Semantic_KITTI_Utils(KITTI_ROOT, subset=args.subset)
class_names = kitti_utils.class_names
num_classes = kitti_utils.num_classes
if args.subset == 'inview':
train_npts = 8000
test_npts = 24000
if args.subset == 'all':
train_npts = 50000
test_npts = 100000
log.info(subset=args.subset, train_npts=train_npts, test_npts=test_npts)
dataset = SemKITTI_Loader(KITTI_ROOT, train_npts, train=True, subset=args.subset)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
test_dataset = SemKITTI_Loader(KITTI_ROOT, test_npts, train=False, subset=args.subset)
testdataloader = DataLoader(test_dataset, batch_size=int(args.batch_size/2), shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.model_name == 'pointnet':
model = PointNetSeg(num_classes, input_dims = 4, feature_transform=True)
else:
model = PointNet2SemSeg(num_classes, feature_dims = 1)
if args.optimizer == 'SGD':
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
elif args.optimizer == 'Adam':
optimizer = torch.optim.Adam(
model.parameters(),
lr=args.learning_rate,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=1e-4)
torch.backends.cudnn.benchmark = True
model = torch.nn.DataParallel(model)
model.cuda()
log.info('Using gpu:',args.gpu)
if args.pretrain is not None:
log.info('Use pretrain model...')
model.load_state_dict(torch.load(args.pretrain))
init_epoch = int(args.pretrain[:-4].split('-')[-1])
log.info('Restart training', epoch=init_epoch)
else:
log.msg('Training from scratch')
init_epoch = 0
best_acc = 0
best_miou = 0
for epoch in range(init_epoch,args.epoch):
model.train()
lr = calc_decay(args.learning_rate, epoch)
log.info(subset=args.subset, model=args.model_name, gpu=args.gpu, epoch=epoch, lr=lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
for points, target in tqdm(dataloader, total=len(dataloader), smoothing=0.9, dynamic_ncols=True):
points = points.float().transpose(2, 1).cuda()
target = target.long().cuda()
if args.model_name == 'pointnet':
logits, trans_feat = model(points)
else:
logits = model(points)
#logits = logits.contiguous().view(-1, num_classes)
#target = target.view(-1, 1)[:, 0]
#loss = F.nll_loss(logits, target)
logits = logits.transpose(2, 1)
loss = nn.CrossEntropyLoss()(logits, target)
if args.model_name == 'pointnet':
loss += feature_transform_reguliarzer(trans_feat) * 0.001
optimizer.zero_grad()
loss.backward()
optimizer.step()
torch.cuda.empty_cache()
acc, miou = test_kitti_semseg(model.eval(), testdataloader,
args.model_name,num_classes,class_names)
save_model = False
if acc > best_acc:
best_acc = acc
if miou > best_miou:
best_miou = miou
save_model = True
if save_model:
fn_pth = '%s-%s-%.5f-%04d.pth' % (args.model_name, args.subset, best_miou, epoch)
log.info('Save model...',fn = fn_pth)
torch.save(model.state_dict(), os.path.join(checkpoints_dir, fn_pth))
else:
log.info('No need to save model')
log.warn('Curr',accuracy=acc, mIOU=miou)
log.warn('Best',accuracy=best_acc, mIOU=best_miou)
def evaluate(args):
kitti_utils = Semantic_KITTI_Utils(KITTI_ROOT, subset=args.subset)
class_names = kitti_utils.class_names
num_classes = kitti_utils.num_classes
if args.subset == 'inview':
test_npts = 24000
if args.subset == 'all':
test_npts = 100000
log.info(subset=args.subset, test_npts=test_npts)
test_dataset = SemKITTI_Loader(KITTI_ROOT, test_npts, train=False, subset=args.subset)
testdataloader = DataLoader(test_dataset, batch_size=int(args.batch_size/2), shuffle=False, num_workers=args.workers)
model = load_pointnet(args.model_name, kitti_utils.num_classes, args.pretrain)
acc, miou = test_kitti_semseg(model.eval(), testdataloader,args.model_name,num_classes,class_names)
log.info('Curr', accuracy=acc, mIOU=miou)
if __name__ == '__main__':
args = parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
if args.mode == "train":
train(args)
if args.mode == "eval":
evaluate(args)