-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_dataloader.py
90 lines (79 loc) · 3.63 KB
/
get_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
from datasets.CelebA import CelebA
def get_dataloader(args):
if args.dataset == 'mnist':
args.hw=32
args.in_channels=1
trans = transforms.Compose([
transforms.Resize(args.hw),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_dataset = datasets.MNIST(root=args.data_dir, train=True, download=args.download, transform=trans)
test_dataset = datasets.MNIST(root=args.data_dir, train=False, download=args.download, transform=trans)
elif args.dataset == 'fashion-mnist':
args.hw=32
args.in_channels=1
trans = transforms.Compose([
transforms.Resize(32),
transforms.ToTensor(),
transforms.Normalize((0.5, ), (0.5, )),
])
train_dataset = datasets.FashionMNIST(root=args.data_dir, train=True, download=args.download, transform=trans)
test_dataset = datasets.FashionMNIST(root=args.data_dir, train=False, download=args.download, transform=trans)
elif args.dataset == 'cifar10':
args.hw=32
args.in_channels=3
trans = transforms.Compose([
transforms.Resize(32),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
train_dataset = datasets.CIFAR10(root=args.data_dir, train=True, download=args.download, transform=trans)
test_dataset = datasets.CIFAR10(root=args.data_dir, train=False, download=args.download, transform=trans)
elif args.dataset == 'stl10':
args.hw=32
args.in_channels=3
trans = transforms.Compose([
transforms.Resize(32),
transforms.ToTensor(),
])
train_dataset = datasets.STL10(root=args.data_dir, split='train', download=args.download, transform=trans)
test_dataset = datasets.STL10(root=args.data_dir, split='test', download=args.download, transform=trans)
elif args.dataset == 'celebA64':
args.hw=64
args.in_channels=3
trans = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
train_dataset = CelebA(root=args.data_dir, split='train',transform=trans,resolution=64)
test_dataset = CelebA(root=args.data_dir, split='test', transform=trans,resolution=64)
elif args.dataset == 'celebA128':
args.hw=128
args.in_channels=3
trans = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
train_dataset = CelebA(root=args.data_dir, split='train',transform=trans,resolution=128)
test_dataset = CelebA(root=args.data_dir, split='test', transform=trans,resolution=128)
elif args.dataset == 'celebA256':
args.hw=256
args.in_channels=3
trans = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
train_dataset = CelebA(root=args.data_dir, split='train',transform=trans,resolution=256)
test_dataset = CelebA(root=args.data_dir, split='test', transform=trans,resolution=256)
# Check if everything is ok with loading datasets
assert train_dataset
assert test_dataset
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=True)
return train_dataloader, test_dataloader