forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
99 lines (84 loc) · 3.57 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import subprocess
import sys
from pathlib import Path
def parse_arguments():
parser = argparse.ArgumentParser(
description="Benchmark llama TensorRT-LLM model.")
parser.add_argument('--model_dir',
type=str,
default=None,
help="Directory with HF model")
parser.add_argument('--quant_ckpt_path',
type=str,
default=None,
help="Path with quanitzed weights")
parser.add_argument('--engine_dir',
type=str,
default=None,
help="Directory to store engines")
return parser.parse_args()
def main(args):
dir_level = 3 # How nested is the current file?
top_level_path = Path(__file__).resolve().parents[dir_level]
example_path = top_level_path / "examples" / "llama"
benchmark_path = top_level_path / "benchmarks" / "python"
input_seqlen = 100
output_seqlen = 100
batch_size = 8
build_args = [
sys.executable,
str(example_path / "build.py"), "--model_dir",
str(args.model_dir), "--quant_ckpt_path",
str(args.quant_ckpt_path), "--dtype", "float16", "--log_level", "info",
"--use_gpt_attention_plugin", "float16", "--use_gemm_plugin", "float16",
"--enable_context_fmha", "--use_weight_only", "--weight_only_precision",
"int4_gptq", "--per_group", "--max_input_len",
str(input_seqlen), "--max_output_len",
str(output_seqlen), "--n_positions",
str(input_seqlen + output_seqlen + 1), "--max_batch_size",
str(batch_size), "--output_dir",
str(args.engine_dir)
]
benchmark_args = [
sys.executable,
str(benchmark_path / "benchmark.py"), "--engine_dir",
str(args.engine_dir), "--mode", "plugin", "-m", "llama_7b", "--dtype",
"float16", "--log_level", "info", "--batch_size",
str(batch_size), "--input_output_len",
f"{input_seqlen},{output_seqlen}", "--num_beams", "1", "--warm_up", "1",
"--num_runs", "3", "--duration", "10", "--csv"
]
def run(pass_args):
print("Running {}".format(" ".join(pass_args)))
subprocess.run(pass_args)
run(build_args)
run(benchmark_args)
if __name__ == '__main__':
args = parse_arguments()
assert args.model_dir, "Please pass in path to model"
assert args.quant_ckpt_path, "Please pass in path to quantized weights"
if not args.engine_dir:
args.engine_dir = Path.cwd() / "engines"
assert Path(
args.model_dir).exists(), "Please pass a valid, existing model path"
assert Path(args.quant_ckpt_path).exists(
), "Please pass a valid, existing path to quantized weights"
args.model_dir = Path(args.model_dir)
args.quant_ckpt_path = Path(args.quant_ckpt_path)
args.engine_dir = Path(args.engine_dir)
main(args)