-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
538 lines (409 loc) · 20 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
from __future__ import division
import os
import sys
import time
import glob
import logging
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.utils
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torchvision.datasets as dset
from torch.autograd import Variable
import torchvision
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.utils.data.distributed
from tensorboardX import SummaryWriter
from config_train import config
from datasets import prepare_train_data, prepare_train_data_autoaugment, prepare_test_data
import numpy as np
import matplotlib
# Force matplotlib to not use any Xwindows backend.
matplotlib.use('Agg')
from matplotlib import pyplot as plt
from PIL import Image
from config_train import config
import genotypes
from model_search import FBNet as Network
from model_infer import FBNet_Infer
from lr import LambdaLR
from thop import profile
from thop.count_hooks import count_convNd
from quantize import QConv2d
custom_ops = {QConv2d: count_convNd}
import argparse
import operations
operations.USE_HSWISH = config.use_hswish
operations.USE_SE = config.use_se
parser = argparse.ArgumentParser(description='DNA')
parser.add_argument('--dataset_path', type=str, default=None,
help='path to ImageNet-100')
parser.add_argument('-b', '--batch_size', type=int, default=None,
help='batch size')
parser.add_argument('--num_workers', type=int, default=None,
help='number of workers per gpu')
parser.add_argument('--world_size', type=int, default=None,
help='number of nodes')
parser.add_argument('--rank', type=int, default=None,
help='node rank')
parser.add_argument('--dist_url', type=str, default=None,
help='url used to set up distributed training')
args = parser.parse_args()
best_acc = 0
best_epoch = 0
def main():
if args.dataset_path is not None:
config.dataset_path = args.dataset_path
if args.batch_size is not None:
config.batch_size = args.batch_size
if args.num_workers is not None:
config.num_workers = args.num_workers
if args.world_size is not None:
config.world_size = args.world_size
if args.world_size is not None:
config.rank = args.rank
if args.dist_url is not None:
config.dist_url = args.dist_url
config.distributed = config.world_size > 1 or config.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
config.ngpus_per_node = ngpus_per_node
config.num_workers = config.num_workers * ngpus_per_node
if config.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
config.world_size = ngpus_per_node * config.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, config))
else:
# Simply call main_worker function
main_worker(config.gpu, ngpus_per_node, config)
def main_worker(gpu, ngpus_per_node, config):
global best_acc
global best_epoch
config.gpu = gpu
pretrain = config.pretrain
if config.gpu is not None:
print("Use GPU: {} for training".format(config.gpu))
# logging.info("config = %s", str(config))
# # preparation ################
# torch.backends.cudnn.enabled = True
# torch.backends.cudnn.benchmark = True
# seed = config.seed
# np.random.seed(seed)
# torch.manual_seed(seed)
# if torch.cuda.is_available():
# torch.cuda.manual_seed(seed)
if config.distributed:
if config.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
config.rank = config.rank * ngpus_per_node + gpu
dist.init_process_group(backend=config.dist_backend, init_method=config.dist_url,
world_size=config.world_size, rank=config.rank)
print("Rank: {}".format(config.rank))
if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
if type(pretrain) == str:
config.save = pretrain
else:
config.save = 'ckpt/{}-{}'.format(config.save, time.strftime("%Y%m%d-%H%M%S"))
logger = SummaryWriter(config.save)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(config.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
logging.info("args = %s", str(config))
else:
logger = None
# Model #######################################
state = torch.load(os.path.join(config.load_path, 'arch.pt'))
alpha = state['alpha']
beta = state['beta']
# alpha = torch.zeros(sum(config.num_layer_list), len(genotypes.PRIMITIVES)).cuda()
# alpha[:,0] = 10
# if type(config.num_bits_list) is list:
# beta = torch.zeros(sum(config.num_layer_list), len(genotypes.PRIMITIVES), len(config.num_bits_list)).cuda()
# else:
# beta = torch.zeros(sum(config.num_layer_list), len(genotypes.PRIMITIVES), 1).cuda()
# beta[:,:,0] = 10
model = FBNet_Infer(alpha, beta, config=config)
if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
flops, params = profile(model, inputs=(torch.randn(1, 3, config.image_height, config.image_width),), custom_ops=custom_ops)
bitops = model.forward_bitops(size=(3, config.image_height, config.image_width))
logging.info("params = %fM, FLOPs = %fM, BitOPs = %fG", params / 1e6, flops / 1e6, bitops / 1e9)
if config.efficiency_metric == 'latency':
fps, searched_hw = model.eval_latency(cifar='cifar' in config.dataset, iteration=100000, mode='random', fix_comp_mode=True, temp=1)
logging.info("FPS of Searched Arch:" + str(fps))
print('config.gpu:', config.gpu)
if config.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if config.gpu is not None:
torch.cuda.set_device(config.gpu)
model.cuda(config.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
config.batch_size = int(config.batch_size / ngpus_per_node)
config.num_workers = int((config.num_workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.gpu])
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
else:
model = torch.nn.DataParallel(model).cuda()
# for param, val in model.named_parameters():
# print(param, val.device)
# if val.device.type == 'cpu':
# print('This tensor is on CPU.')
# sys.exit()
if config.opt == 'Adam':
optimizer = torch.optim.Adam(
model.parameters(),
lr=config.lr,
betas=config.betas)
elif config.opt == 'Sgd':
optimizer = torch.optim.SGD(
model.parameters(),
lr=config.lr,
momentum=config.momentum,
weight_decay=config.weight_decay)
else:
print("Wrong Optimizer Type.")
sys.exit()
# lr policy ##############################
# total_iteration = config.nepochs * config.niters_per_epoch
if config.lr_schedule == 'linear':
lr_policy = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=LambdaLR(config.nepochs, 0, config.decay_epoch).step)
elif config.lr_schedule == 'exponential':
lr_policy = torch.optim.lr_scheduler.ExponentialLR(optimizer, config.lr_decay)
elif config.lr_schedule == 'multistep':
lr_policy = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=config.milestones, gamma=config.gamma)
elif config.lr_schedule == 'cosine':
lr_policy = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(config.nepochs), eta_min=config.learning_rate_min)
else:
print("Wrong Learning Rate Schedule Type.")
sys.exit()
cudnn.benchmark = True
# if use multi machines, the pretrained weight and arch need to be duplicated on all the machines
if type(pretrain) == str and os.path.exists(pretrain + "/weights_latest.pt"):
pretrained_model = torch.load(pretrain + "/weights_latest.pt")
partial = pretrained_model['state_dict']
state = model.state_dict()
pretrained_dict = {k: v for k, v in partial.items() if k in state and state[k].size() == partial[k].size()}
state.update(pretrained_dict)
model.load_state_dict(state)
optimizer.load_state_dict(pretrained_model['optimizer'])
lr_policy.load_state_dict(pretrained_model['lr_scheduler'])
start_epoch = pretrained_model['epoch'] + 1
best_acc = pretrained_model['best_acc']
best_epoch = pretrained_model['best_epoch']
print('Resume from Epoch %d. Load pretrained weight.' % start_epoch)
else:
start_epoch = 0
print('No checkpoint. Train from scratch.')
# data loader ############################
if 'cifar' in config.dataset:
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)),
])
if config.dataset == 'cifar10':
train_data = dset.CIFAR10(root=config.dataset_path, train=True, download=True, transform=transform_train)
test_data = dset.CIFAR10(root=config.dataset_path, train=False, download=True, transform=transform_test)
elif config.dataset == 'cifar100':
train_data = dset.CIFAR100(root=config.dataset_path, train=True, download=True, transform=transform_train)
test_data = dset.CIFAR100(root=config.dataset_path, train=False, download=True, transform=transform_test)
else:
print('Wrong dataset.')
sys.exit()
elif config.dataset == 'imagenet':
if config.autoaugment:
train_data = prepare_train_data_autoaugment(dataset=config.dataset,
datadir=config.dataset_path+'/train')
else:
train_data = prepare_train_data(dataset=config.dataset,
datadir=config.dataset_path+'/train')
test_data = prepare_test_data(dataset=config.dataset,
datadir=config.dataset_path+'/val')
else:
print('Wrong dataset.')
sys.exit()
if config.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_data)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_data, batch_size=config.batch_size, shuffle=(train_sampler is None),
pin_memory=True, num_workers=config.num_workers, sampler=train_sampler)
test_loader = torch.utils.data.DataLoader(test_data,
batch_size=config.batch_size,
shuffle=False,
pin_memory=True,
num_workers=config.num_workers)
if config.eval_only:
if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
logging.info('Eval: acc = %f', infer(0, model, test_loader, logger))
sys.exit(0)
# tbar = tqdm(range(config.nepochs), ncols=80)
for epoch in range(start_epoch, config.nepochs):
if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
# tbar.set_description("[Epoch %d/%d][train...]" % (epoch + 1, config.nepochs))
logging.info("[Epoch %d/%d] lr=%f" % (epoch + 1, config.nepochs, optimizer.param_groups[0]['lr']))
if config.distributed:
train_sampler.set_epoch(epoch)
train(train_loader, model, optimizer, lr_policy, logger, epoch, config)
torch.cuda.empty_cache()
lr_policy.step()
# if config.dataset == 'imagenet' and epoch < 250:
# eval_epoch = 10
# else:
# eval_epoch = config.eval_epoch
eval_epoch = config.eval_epoch
#validation
if (epoch+1) % eval_epoch == 0:
# if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
# tbar.set_description("[Epoch %d/%d][validation...]" % (epoch + 1, config.nepochs))
with torch.no_grad():
acc = infer(epoch, model, test_loader, logger)
if config.distributed:
acc = reduce_tensor(acc, config.world_size)
if acc > best_acc:
best_acc = acc
best_epoch = epoch
if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
logger.add_scalar('acc/val', acc, epoch)
logging.info("Epoch:%d Acc:%.3f Best Acc:%.3f Best Epoch:%d" % (epoch, acc, best_acc, best_epoch))
state = {}
state['state_dict'] = model.state_dict()
state['optimizer'] = optimizer.state_dict()
state['lr_scheduler'] = lr_policy.state_dict()
state['epoch'] = epoch
state['acc'] = acc
state['best_acc'] = best_acc
state['best_epoch'] = best_epoch
torch.save(state, os.path.join(config.save, 'weights_%d.pt'%epoch))
torch.save(state, os.path.join(config.save, 'weights_latest.pt'))
# save(model, os.path.join(config.save, 'weights_%d.pt'%epoch))
# save(model, os.path.join(config.save, 'weights_latest.pt'))
if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
torch.save(state, os.path.join(config.save, 'weights.pt'))
# save(model, os.path.join(config.save, 'weights.pt'))
def train(train_loader, model, optimizer, lr_policy, logger, epoch, config):
model.train()
# bar_format = '{desc}[{elapsed}<{remaining},{rate_fmt}]'
# pbar = tqdm(range(config.niters_per_epoch), file=sys.stdout, bar_format=bar_format, ncols=80)
# dataloader_model = iter(train_loader)
for step, (input, target) in enumerate(train_loader):
optimizer.zero_grad()
# input, target = dataloader_model.next()
start_time = time.time()
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
data_time = time.time() - start_time
if config.label_smoothing:
criterion = loss_label_smoothing
else:
criterion = model.module._criterion
r = np.random.rand(1)
if config.cutmix and config.beta > 0 and r < config.cutmix_prob:
# generate mixed sample
lam = np.random.beta(config.beta, config.beta)
rand_index = torch.randperm(input.size()[0]).cuda()
target_a = target
target_b = target[rand_index]
bbx1, bby1, bbx2, bby2 = rand_bbox(input.size(), lam)
input[:, :, bbx1:bbx2, bby1:bby2] = input[rand_index, :, bbx1:bbx2, bby1:bby2]
# adjust lambda to exactly match pixel ratio
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (input.size()[-1] * input.size()[-2]))
# compute output
logit = model(input)
loss = criterion(logit, target_a) * lam + criterion(logit, target_b) * (1. - lam)
else:
logit = model(input)
loss = criterion(logit, target)
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip)
optimizer.step()
optimizer.zero_grad()
total_time = time.time() - start_time
if step % 10 == 0:
if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % config.ngpus_per_node == 0):
logging.info("[Epoch %d/%d][Step %d/%d] Loss=%.3f Time=%.3f Data Time=%.3f" % (epoch + 1, config.nepochs, step + 1, len(train_loader), loss.item(), total_time, data_time))
logger.add_scalar('loss/train', loss, epoch*len(train_loader)+step)
torch.cuda.empty_cache()
del loss
def loss_label_smoothing(outputs, labels):
"""
loss function for label smoothing regularization
"""
alpha = 0.1
N = outputs.size(0) # batch_size
C = outputs.size(1) # number of classes
smoothed_labels = torch.full(size=(N, C), fill_value= alpha / (C - 1)).cuda()
smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=1-alpha)
log_prob = torch.nn.functional.log_softmax(outputs, dim=1)
loss = -torch.sum(log_prob * smoothed_labels) / N
return loss
def rand_bbox(size, lam):
W = size[2]
H = size[3]
cut_rat = np.sqrt(1. - lam)
cut_w = np.int(W * cut_rat)
cut_h = np.int(H * cut_rat)
# uniform
cx = np.random.randint(W)
cy = np.random.randint(H)
bbx1 = np.clip(cx - cut_w // 2, 0, W)
bby1 = np.clip(cy - cut_h // 2, 0, H)
bbx2 = np.clip(cx + cut_w // 2, 0, W)
bby2 = np.clip(cy + cut_h // 2, 0, H)
return bbx1, bby1, bbx2, bby2
def infer(epoch, model, test_loader, logger):
model.eval()
prec1_list = []
for i, (input, target) in enumerate(test_loader):
input_var = Variable(input, volatile=True).cuda()
target_var = Variable(target, volatile=True).cuda()
output = model(input_var)
prec1, = accuracy(output.data, target_var, topk=(1,))
prec1_list.append(prec1)
acc = sum(prec1_list)/len(prec1_list)
return acc
def reduce_tensor(rt, n):
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= n
return rt
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def save(model, model_path):
torch.save(model.state_dict(), model_path)
if __name__ == '__main__':
main()