-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·287 lines (220 loc) · 10.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import sys
import time
import torch
import warnings
import argparse
import numpy as np
from torch import optim
from utils import infolog
from torch import nn as nn
from hparams import hparams
from text.symbols import symbols
from torch.autograd import Variable
from tacotron.tacotron import Tacotron
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from utils.logger import Tacotron2Logger
from utils import prepare_dirs, str2bool
from tacotron.loss_function import Tacotron2Loss
from utils.data_utils import TextMelCollate, TextMelLoader
from datasets.datafeeder_tacotron import DataFeederTacotron
warnings.simplefilter(action='ignore', category=FutureWarning)
summary = SummaryWriter()
log = infolog.log
fs = hparams['sample_rate']
global_step = 0
global_epoch = 0
def _pad(seq, max_len):
return np.pad(seq, (0, max_len - len(seq)),
mode='constant', constant_values=0)
def _prepare_inputs(inputs): # inputs: batch 길이 만큼의 list
max_len = max((len(x) for x in inputs))
return np.stack([_pad(x, max_len) for x in inputs])
def _prepare_targets(targets, alignment):
# targets: shape of list [ (162,80) , (172, 80), ...]
max_len = max((len(t) for t in targets)) + 1
return np.stack([_pad_target(t, _round_up(max_len, alignment)) for t in targets])
def _prepare_stop_token_targets(targets, alignment):
max_len = max((len(t) for t in targets)) + 1
return np.stack([_pad_stop_token_target(t, _round_up(max_len, alignment)) for t in targets])
def _pad_target(t, length):
# t: 2 dim array. ( xx, num_mels) ==> (length,num_mels)
return np.pad(t, [(0, length - t.shape[0]), (0,0)], mode='constant', constant_values=0) # (169, 80) ==> (length, 80)
def _pad_stop_token_target(t, length):
return np.pad(t, (0, length - t.shape[0]), mode='constant', constant_values=1)
def _round_up(x, multiple):
remainder = x % multiple
return x if remainder == 0 else x + multiple - remainder
def _learning_rate_decay(init_lr, global_step):
warmup_steps = 4000.0
step = global_step + 1.
lr = init_lr * warmup_steps**0.5 * np.minimum(
step * warmup_steps**-1.5, step**-0.5)
return lr
def save_checkpoint(model, optimizer, learning_rate, iteration, filepath):
print("Saving model and optimizer state at iteration {} to {}".format(
iteration, filepath))
torch.save({'iteration': iteration,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'learning_rate': learning_rate}, filepath)
def train_init(log_dir, config, multi_speaker):
config.data_path = config.data_paths
data_dirs = config.data_paths
num_speakers = len(data_dirs)
config.num_test = config.num_test_per_speaker * num_speakers # 2*1
if num_speakers > 1 and hparams['model_type'] not in ["deepvoice", "simple"]:
raise Exception("[!] Unkown model_type for multi-speaker: {}".format(config.model_type))
checkpoint_path = os.path.join(log_dir, 'model.ckpt')
log('-'*50)
log('-'*50)
log(' [*] Checkpoint path: %s' % checkpoint_path)
log(' [*] Loading training data from: %s' % data_dirs)
log(' [*] Using model: %s' % config.model_dir) # 'logdir-tacotron\\moon_2018-08-28_13-06-42'
trainset = TextMelLoader(config.data_paths, hparams, 'train')
valset = TextMelLoader(config.data_paths, hparams, 'val')
collate_fn = TextMelCollate(hparams['n_frames_per_step'])
train_loader = DataLoader(trainset, num_workers=0, shuffle=True,
batch_size=hparams['batch_size'], pin_memory=False,
drop_last=True, collate_fn=collate_fn)
num_speakers = len(config.data_paths)
model = Tacotron(hparams, len(symbols), num_speakers=num_speakers)
optimizer = optim.Adam(model.parameters(), lr=hparams['initial_learning_rate'],
betas=(hparams['adam_beta1'], hparams['adam_beta2']))
# Train!
try:
train(model, train_loader, valset, optimizer,
init_lr=hparams['initial_learning_rate'],
checkpoint_dir=config.log_dir,
checkpoint_interval=config.checkpoint_interval,
nepochs=hparams['tacotron_decay_steps'],
clip_thresh=1.0,
config=config, multi_speaker=multi_speaker,
collate_fn=collate_fn)
except KeyboardInterrupt:
save_checkpoint(
model, optimizer, global_step, config.log_dir, global_epoch)
print("Finished")
sys.exit(0)
def load_checkpoint(checkpoint_path, model, optimizer):
print(checkpoint_path)
assert os.path.isfile(checkpoint_path)
print("Loading checkpoint '{}'".format(checkpoint_path))
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
model.load_state_dict(checkpoint_dict['state_dict'])
optimizer.load_state_dict(checkpoint_dict['optimizer'])
learning_rate = checkpoint_dict['learning_rate']
iteration = checkpoint_dict['iteration']
print("Loaded checkpoint '{}' from iteration {}" .format(
checkpoint_path, iteration))
return model, optimizer, learning_rate, iteration
def prepare_directories_and_logger(log_directory):
if not os.path.isdir(log_directory):
os.mkdir(log_directory)
logger = Tacotron2Logger(os.path.join(log_directory))
return logger
def validate(model, criterion, valset, iteration, batch_size,
collate_fn, logger, multi_speaker):
"""Handles all the validation scoring and printing"""
model.eval()
n_priority_freq = int(3000 / (hparams['sample_rate'] * 0.5) * hparams['num_freq'])
with torch.no_grad():
val_loader = DataLoader(valset, num_workers=0,
shuffle=False, batch_size=batch_size,
pin_memory=False, collate_fn=collate_fn)
val_loss = 0.0
for i, batch in enumerate(val_loader):
x, y = model.parse_batch(batch)
y_pred = model(x)
loss = criterion(y_pred, y)
reduced_val_loss = loss.item()
val_loss += reduced_val_loss
val_loss = val_loss / (i + 1)
model.train()
print("Validation loss {:9f} ".format(loss))
logger.log_validation(reduced_val_loss, model, y, y_pred, iteration)
def train(model, data_loader, test_loader, optimizer,
init_lr=0.002,
checkpoint_dir=None, checkpoint_interval=None, nepochs=None,
clip_thresh=1.0, config=None, multi_speaker=None, collate_fn=None):
iteration = 0
epoch_offset = 0
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if config.checkpoint_file is not None:
model, optimizer, _learning_rate, epoch_offset = load_checkpoint(
config.checkpoint_file, model, optimizer)
epoch_offset += 1 # next iteration is iteration + 1
#epoch_offset = max(0, int(iteration / len(data_loader)))
logger = prepare_directories_and_logger(config.log_dir)
learning_rate = hparams['learning_rate']
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate,
weight_decay=hparams['weight_decay'], betas=(0.9, 0.999))
model.train()
model.to(device)
criterion = Tacotron2Loss()
logger = prepare_directories_and_logger(
config.logger_path)
n_priority_freq = int(3000 / (hparams['sample_rate'] * 0.5) * hparams['num_freq'])
multi_speaker = torch.LongTensor(multi_speaker)
multi_speaker = Variable(multi_speaker.to(device))
if multi_speaker.size(0) > 1: # Multi-Speaker
for epoch in range(epoch_offset, nepochs):
print("Epoch: {}".format(epoch))
running_loss = 0.
for batch in data_loader:
start = time.perf_counter()
current_lr = _learning_rate_decay(init_lr, iteration)
for param_group in optimizer.param_groups:
param_group['lr'] = current_lr
optimizer.zero_grad()
model.zero_grad()
x, y = model.parse_batch(batch)
y_pred = model(x)
loss = criterion(y_pred, y)
loss.backward()
optimizer.step()
duration = time.perf_counter() - start
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), 1.0)
print("Train loss {} {:.6f} Grad Norm {:.6f} {:.2f}s/it".format(
iteration, loss, grad_norm, duration))
iteration += 1
logger.log_training(
loss, grad_norm, learning_rate, duration, iteration)
if (iteration % config.checkpoint_interval == 0):
checkpoint_path = os.path.join(
config.checkpoint_path, "checkpoint_{}".format(iteration))
save_checkpoint(model, optimizer, learning_rate, iteration,
checkpoint_path)
validate(model, criterion, test_loader, iteration,
config.batch_size, collate_fn, logger, multi_speaker)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--data_paths', default='./datasets/kss/,./datasets/kss/')
parser.add_argument('--load_path', default=None)
parser.add_argument('--checkpoint_file', default=None) #'./checkpoint_path/checkpoint_2'
parser.add_argument('--log_dir', default='logdir-tacotron')
parser.add_argument('--wav_dir', default='./wav/')
parser.add_argument('--checkpoint_path', type=str, default='./checkpoint_path/')
parser.add_argument('--logger_path', default='./logger/')
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--num_test_per_speaker', type=int, default=2)
parser.add_argument('--random_seed', type=int, default=123)
parser.add_argument('--skip_path_filter', type=str2bool, default=False, help='Use only for debugging')
parser.add_argument('--checkpoint_interval', type=int, default=1000) # 2000
parser.add_argument('--n_gpus', type=int, default=torch.cuda.device_count())
config = parser.parse_args()
config.data_paths = config.data_paths.split(',')
hparams.update({"num_speakers": len(config.data_paths)})
multi_speaker = len(config.data_paths)
prepare_dirs(config, hparams)
log_path = os.path.join(config.model_dir, 'train.log')
torch.manual_seed(config.random_seed)
torch.cuda.manual_seed_all(config.random_seed)
print(config.data_paths)
if not os.path.exists(config.checkpoint_path):
os.mkdir(config.checkpoint_path)
train_init(config.model_dir, config, multi_speaker)
if __name__ == '__main__':
main()