forked from google/youtube-8m
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_extractor.py
170 lines (139 loc) · 6.31 KB
/
feature_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Facilitates extracting YouTube8M features from RGB images."""
import os
import sys
import tarfile
import numpy
from six.moves import urllib
import tensorflow as tf
INCEPTION_TF_GRAPH = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
YT8M_PCA_MAT = 'http://data.yt8m.org/yt8m_pca.tgz'
MODEL_DIR = os.path.join(os.getenv('HOME'), 'yt8m')
class YouTube8MFeatureExtractor(object):
"""Extracts YouTube8M features for RGB frames.
First time constructing this class will create directory `yt8m` inside your
home directory, and will download inception model (85 MB) and YouTube8M PCA
matrix (15 MB). If you want to use another directory, then pass it to argument
`model_dir` of constructor.
If the model_dir exist and contains the necessary files, then files will be
re-used without download.
Usage Example:
from PIL import Image
import numpy
# Instantiate extractor. Slow if called first time on your machine, as it
# needs to download 100 MB.
extractor = YouTube8MFeatureExtractor()
image_file = os.path.join(extractor._model_dir, 'cropped_panda.jpg')
im = numpy.array(Image.open(image_file))
features = extractor.extract_rgb_frame_features(im)
** Note: OpenCV reverses the order of channels (i.e. orders channels as BGR
instead of RGB). If you are using OpenCV, then you must do:
im = im[:, :, ::-1] # Reverses order on last (i.e. channel) dimension.
then call `extractor.extract_rgb_frame_features(im)`
"""
def __init__(self, model_dir=MODEL_DIR):
# Create MODEL_DIR if not created.
self._model_dir = model_dir
if not os.path.exists(model_dir):
os.makedirs(model_dir)
# Load PCA Matrix.
download_path = self._maybe_download(YT8M_PCA_MAT)
pca_mean = os.path.join(self._model_dir, 'mean.npy')
if not os.path.exists(pca_mean):
tarfile.open(download_path, 'r:gz').extractall(model_dir)
self._load_pca()
# Load Inception Network
download_path = self._maybe_download(INCEPTION_TF_GRAPH)
inception_proto_file = os.path.join(self._model_dir,
'classify_image_graph_def.pb')
if not os.path.exists(inception_proto_file):
tarfile.open(download_path, 'r:gz').extractall(model_dir)
self._load_inception(inception_proto_file)
def extract_rgb_frame_features(self, frame_rgb, apply_pca=True):
"""Applies the YouTube8M feature extraction over an RGB frame.
This passes `frame_rgb` to inception3 model, extracting hidden layer
activations and passing it to the YouTube8M PCA transformation.
Args:
frame_rgb: numpy array of uint8 with shape (height, width, channels) where
channels must be 3 (RGB), and height and weight can be anything, as the
inception model will resize.
apply_pca: If not set, PCA transformation will be skipped.
Returns:
Output of inception from `frame_rgb` (2048-D) and optionally passed into
YouTube8M PCA transformation (1024-D).
"""
assert len(frame_rgb.shape) == 3
assert frame_rgb.shape[2] == 3 # 3 channels (R, G, B)
with self._inception_graph.as_default():
if apply_pca:
frame_features = self.session.run(
'pca_final_feature:0', feed_dict={'DecodeJpeg:0': frame_rgb})
else:
frame_features = self.session.run(
'pool_3/_reshape:0', feed_dict={'DecodeJpeg:0': frame_rgb})
frame_features = frame_features[0]
return frame_features
def apply_pca(self, frame_features):
"""Applies the YouTube8M PCA Transformation over `frame_features`.
Args:
frame_features: numpy array of floats, 2048 dimensional vector.
Returns:
1024 dimensional vector as a numpy array.
"""
# Subtract mean
feats = frame_features - self.pca_mean
# Multiply by eigenvectors.
feats = feats.reshape((1, 2048)).dot(self.pca_eigenvecs).reshape((1024,))
# Whiten
feats /= numpy.sqrt(self.pca_eigenvals + 1e-4)
return feats
def _maybe_download(self, url):
"""Downloads `url` if not in `_model_dir`."""
filename = os.path.basename(url)
download_path = os.path.join(self._model_dir, filename)
if os.path.exists(download_path):
return download_path
def _progress(count, block_size, total_size):
sys.stdout.write(
'\r>> Downloading %s %.1f%%' %
(filename, float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
urllib.request.urlretrieve(url, download_path, _progress)
statinfo = os.stat(download_path)
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
return download_path
def _load_inception(self, proto_file):
graph_def = tf.GraphDef.FromString(open(proto_file, 'rb').read())
self._inception_graph = tf.Graph()
with self._inception_graph.as_default():
_ = tf.import_graph_def(graph_def, name='')
self.session = tf.Session()
Frame_Features = self.session.graph.get_tensor_by_name(
'pool_3/_reshape:0')
Pca_Mean = tf.constant(value=self.pca_mean, dtype=tf.float32)
Pca_Eigenvecs = tf.constant(value=self.pca_eigenvecs, dtype=tf.float32)
Pca_Eigenvals = tf.constant(value=self.pca_eigenvals, dtype=tf.float32)
Feats = Frame_Features[0] - Pca_Mean
Feats = tf.reshape(
tf.matmul(tf.reshape(Feats, [1, 2048]), Pca_Eigenvecs), [
1024,
])
tf.divide(Feats, tf.sqrt(Pca_Eigenvals + 1e-4), name='pca_final_feature')
def _load_pca(self):
self.pca_mean = numpy.load(os.path.join(self._model_dir, 'mean.npy'))[:, 0]
self.pca_eigenvals = numpy.load(
os.path.join(self._model_dir, 'eigenvals.npy'))[:1024, 0]
self.pca_eigenvecs = numpy.load(
os.path.join(self._model_dir, 'eigenvecs.npy')).T[:, :1024]