-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathprint-training-configuration.F90
31 lines (31 loc) · 1.51 KB
/
print-training-configuration.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
! Copyright (c), The Regents of the University of California
! Terms of use are as specified in LICENSE.txt
program print_training_configuration
!! Demonstrate how to construct and print a training_configuration_t object
use fiats_m, only : training_configuration_t, hyperparameters_t, network_configuration_t, tensor_names_t
use julienne_m, only : file_t, string_t
implicit none
#ifndef _CRAYFTN
associate(training_configuration => training_configuration_t( &
hyperparameters_t(mini_batches=10, learning_rate=1.5, optimizer = "adam") &
,network_configuration_t(skip_connections=.false., nodes_per_layer=[2,72,2], activation_name="sigmoid") &
,tensor_names_t(inputs = [string_t("pressure"), string_t("temperature")], outputs = ([string_t("saturated mixing ratio")])) &
))
associate(json_file => file_t(training_configuration%to_json()))
call json_file%write_lines()
end associate
end associate
#else
block
type(training_configuration_t) :: training_configuration
type(file_t) :: json_file
training_configuration = training_configuration_t( &
hyperparameters_t(mini_batches=10, learning_rate=1.5, optimizer = "adam") &
,network_configuration_t(skip_connections=.false., nodes_per_layer=[2,72,2], activation_name="sigmoid") &
,tensorm_names_t(inputs=[string_t("pressure"), string_t("temperature")], outputs([string_t("saturated mixing ratio")])) &
)
json_file = file_t(training_configuration%to_json())
call json_file%write_lines()
end block
#endif
end program